|
import os.path as osp
|
|
import glob
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import RRDBNet_arch as arch
|
|
|
|
model_path = 'models/RRDB_ESRGAN_x4.pth'
|
|
device = torch.device('cpu')
|
|
|
|
|
|
test_img_folder = 'LR/*'
|
|
|
|
model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
|
model.load_state_dict(torch.load(model_path), strict=True)
|
|
model.eval()
|
|
model = model.to(device)
|
|
|
|
print('Model path {:s}. \nTesting...'.format(model_path))
|
|
|
|
idx = 0
|
|
for path in glob.glob(test_img_folder):
|
|
idx += 1
|
|
base = osp.splitext(osp.basename(path))[0]
|
|
print(idx, base)
|
|
|
|
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
|
img = img * 1.0 / 255
|
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
|
img_LR = img.unsqueeze(0)
|
|
img_LR = img_LR.to(device)
|
|
|
|
with torch.no_grad():
|
|
output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
|
output = (output * 255.0).round()
|
|
cv2.imwrite('results/{:s}_rlt.png'.format(base), output)
|
|
|