ESRGAN1 / transer_RRDB_models.py
Voix's picture
Upload 9 files
0bdbb84 verified
import os
import torch
import RRDBNet_arch as arch
pretrained_net = torch.load('./models/RRDB_ESRGAN_x4.pth')
save_path = './models/RRDB_ESRGAN_x4.pth'
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
crt_net = crt_model.state_dict()
load_net_clean = {}
for k, v in pretrained_net.items():
if k.startswith('module.'):
load_net_clean[k[7:]] = v
else:
load_net_clean[k] = v
pretrained_net = load_net_clean
print('###################################\n')
tbd = []
for k, v in crt_net.items():
tbd.append(k)
# directly copy
for k, v in crt_net.items():
if k in pretrained_net and pretrained_net[k].size() == v.size():
crt_net[k] = pretrained_net[k]
tbd.remove(k)
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
for k in tbd.copy():
if 'RDB' in k:
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
if '.weight' in k:
ori_k = ori_k.replace('.weight', '.0.weight')
elif '.bias' in k:
ori_k = ori_k.replace('.bias', '.0.bias')
crt_net[k] = pretrained_net[ori_k]
tbd.remove(k)
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
torch.save(crt_net, save_path)
print('Saving to ', save_path)