ppo-LunarLander-v2 / config.json
Vputz's picture
Upload PPO LunarLander-v2 trained agent
2ab90c0
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6ce0102a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6ce0102b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6ce0102b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6ce0102c20>", "_build": "<function ActorCriticPolicy._build at 0x7d6ce0102cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7d6ce0102d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d6ce0102dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d6ce0102e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7d6ce0102ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d6ce0102f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d6ce0103010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d6ce01030a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d6ce0110b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691421717919473096, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMo+mj5ZSQ4/MDswvrATlL4y3es961FVvgAAAAAAAAAAOosWvjw7kT9Kqpu+lGHzvuWObb7Ssti9AAAAAAAAAAAmAa897AeoPnvlgbpBRY++DuhrPSY4rD0AAAAAAAAAAHM/mD3rTMY9MvwgPYbShL7C9Zw8fk6uPQAAAAAAAAAA2inNvU8vCz0eLAA+0UN/vgAiMDy1j4s8AAAAAAAAAAAAD+O8RHyJPxJh5b3NbgC/cokbveZL3rwAAAAAAAAAANMuiT4d+rA+uHheviUwgr5DA7I8lFaSvQAAAAAAAAAAzd+tvSeYvT9Wuhq/NiKkPUp6rLwtLGK+AAAAAAAAAABQBp2+zkwsP9Y6Fz21do++OwbNvUNyGTsAAAAAAAAAAJr19rzEN0k+ZghTPbUJor7FQYI5AHP/OwAAAAAAAAAATYuDvUliaD6NQqg9utKcvvPLjryy35y7AAAAAAAAAACgPgm+7fFZPrU3rT2RznC+sUuRvXl7or0AAAAAAAAAAOYbmr0850M9dmLrPdYPab67No89gzfPuwAAAAAAAAAA7YqBPhoTP73+Q9m5QBvAOFuNpb4v8xk5AACAPwAAgD9Ncu09nK4CvA6vrTusM2c8HW9GPU+vOL0AAIA/AACAP2Zkj7wXr2o/28tUvG0y2L4tzYO8pxmqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJcEBbOeJ6MAWyUTSsBjAF0lEdAlHwblaKUFHV9lChoBkdAcS5QBPsRhGgHTSoBaAhHQJR83qIJqqR1fZQoaAZHQG4BPYnOSntoB01PAWgIR0CUfU9Nvfj0dX2UKGgGR0BvToznA6+4aAdNAAFoCEdAlH4LL+xW1nV9lChoBkdAcApMiKR+0GgHTRUBaAhHQJR/cfq5byJ1fZQoaAZHQHIEIht+CshoB00oAWgIR0CUf4RgqmTDdX2UKGgGR0Bw2fX6InBtaAdNBgFoCEdAlIBlXiiqQ3V9lChoBkdAbLnkvsZ5zGgHTQIBaAhHQJSBhjUd7v51fZQoaAZHQHBAdKVY6n1oB00CAWgIR0CUglEHt4RmdX2UKGgGR0Bx0zbnHNoraAdNYQFoCEdAlIMOFYdQwnV9lChoBkdAb2p9Nvfj0mgHTbIBaAhHQJSEJgG8mKJ1fZQoaAZHQHMlUXgtOEdoB00/AWgIR0CUhEPUKArhdX2UKGgGR0BvLHwiJO32aAdNZQFoCEdAlIRYtHxz73V9lChoBkdAcauGmk30gGgHTYgBaAhHQJSEo02tMf11fZQoaAZHQG44To2XLNhoB00qAWgIR0CUhLD7qIJrdX2UKGgGR0BxpRP+GXXzaAdNSAFoCEdAlIZS3PRiPXV9lChoBkdAccXkBCD28WgHTTIBaAhHQJSGlqynk1d1fZQoaAZHQHAXixZ+x4ZoB00NAWgIR0CUhtzshPj5dX2UKGgGR0Bvna42CNCJaAdNNgFoCEdAlIdTdHlOoHV9lChoBkdAcTDMTN+so2gHTR8BaAhHQJSKrDFZPmB1fZQoaAZHQHCUowZflZJoB01CAWgIR0CUiwF98Z1ndX2UKGgGR0BxU2N96TnraAdNAAFoCEdAlIv1WXC0nnV9lChoBkdAcg6eGwiaAmgHTS0BaAhHQJSM9wWFev91fZQoaAZHQHJIbcKw6hhoB02bAWgIR0CUj1uBczIndX2UKGgGR0ByVUwCbMHKaAdNEQFoCEdAlI/ZvYODrnV9lChoBkdAcaGbu+h4+2gHTUYBaAhHQJSQjp0OmSB1fZQoaAZHQG3SJ4SpR41oB00qAWgIR0CUkLcj7hvSdX2UKGgGR0BywlXYDklvaAdNJAFoCEdAlJEaakRBeHV9lChoBkdActJ3irDIimgHTS8BaAhHQJSRYKrq+rV1fZQoaAZHQHDxPddmg8NoB009AWgIR0CUkXw6ySmqdX2UKGgGR0BxUVOTJQtSaAdL82gIR0CUkYW5paicdX2UKGgGR0ByvnGp++dtaAdNHAFoCEdAlJI5uyeI23V9lChoBkdAcku6fapPymgHTSEBaAhHQJSShtxdY4h1fZQoaAZHQG1xHW8RL9NoB00QAWgIR0CUkpbbDdgwdX2UKGgGR0BzAaVu76HkaAdNFgFoCEdAlJUO3pfQbHV9lChoBkdAcMwAU+LWJGgHTRABaAhHQJSVe4YrJ8x1fZQoaAZHQEUWqJ/G2kVoB0u8aAhHQJSWk5XEIgN1fZQoaAZHQHD/bnTy8SRoB0vvaAhHQJSYECW/rSp1fZQoaAZHQG+ghjOLR8doB02OAWgIR0CUmPR8+iaidX2UKGgGR0ByInNcGC7LaAdL/GgIR0CUmRSGrS3LdX2UKGgGR0Byv5CswL3LaAdNGQFoCEdAlJksuFpPAXV9lChoBkdAcfBaEzwc52gHTT8BaAhHQJSZy8Empl11fZQoaAZHQG9XsJY1YQtoB0v8aAhHQJSaFwLmZE51fZQoaAZHQG7dIznA6+5oB00dAWgIR0CUmjoVVPvbdX2UKGgGR0BxWiZAprk9aAdNUAFoCEdAlJrlUQ04znV9lChoBkdAcKnH5rP+oGgHTR8BaAhHQJSrWOGTLW91fZQoaAZHQHK0jvmYBvJoB00sAWgIR0CUq6RSxZ+ydX2UKGgGR0Bt9W2G7BfsaAdNoQFoCEdAlKxIWxhUi3V9lChoBkdAWCITewcHW2gHTegDaAhHQJSta3CsOoZ1fZQoaAZHQFDMLDQ7cO9oB0vsaAhHQJSt+29cry11fZQoaAZHQE2CShakhzNoB0vOaAhHQJSuV9ORDCx1fZQoaAZHQHAs8WGh24doB00pAWgIR0CUrmO5J9RadX2UKGgGR0BzYRYlpoK2aAdNfQFoCEdAlLFoAbQ1JnV9lChoBkdAczQvwVj7RGgHTSMBaAhHQJSx0fnwG4Z1fZQoaAZHQHOQLowEhaFoB00UAWgIR0CUsm7P6be/dX2UKGgGR0BxXLrxAjY7aAdL52gIR0CUssn0TURWdX2UKGgGR0BQNPGlyimEaAdL1WgIR0CUsuzOHFgldX2UKGgGR0BxWRfpljEvaAdNNAFoCEdAlLNiJCSid3V9lChoBkdAcaGvES/TLGgHTVQBaAhHQJSznQHAymB1fZQoaAZHQG/dmrjo6jpoB01HAWgIR0CUs7pA2Q4kdX2UKGgGR0ByIrtIClrNaAdNawFoCEdAlLQZ0CA+ZHV9lChoBkdAcFv++dsi0WgHTScBaAhHQJS0c1yeZoh1fZQoaAZHQHMNjfNzKcNoB01GAWgIR0CUtKOH31zydX2UKGgGR0BzVEr1/Ue/aAdNAwFoCEdAlLVaFmFrVXV9lChoBkdAcS1NBWxQi2gHTRQBaAhHQJS2T4Hooux1fZQoaAZHQHEnprxiG35oB00wAWgIR0CUt3f642CNdX2UKGgGR0BxQ/ZnL7oCaAdNMwFoCEdAlLeEF8ohIXV9lChoBkdARukxASnLq2gHS7poCEdAlLe7wBo243V9lChoBkdAciGcfeUILWgHS+ZoCEdAlLndzKcNIHV9lChoBkdAcs7GuLaVU2gHS/doCEdAlLuGVzIV/XV9lChoBkdAcGv9s7+1jWgHTTABaAhHQJS7h61LJ0Z1fZQoaAZHQHA8bdSEUTNoB00NAWgIR0CUu+8lHBk7dX2UKGgGR0BxiFmFrVOLaAdL+WgIR0CUu/pJf6XTdX2UKGgGR0BCfQXZXdTHaAdLxGgIR0CUvG6hQFcIdX2UKGgGR0Bx0Ojvd/KAaAdL/2gIR0CUvOMI/qxDdX2UKGgGR0BtYBul41P4aAdNBwFoCEdAlL3v24/eL3V9lChoBkdAUCDnnuAqeGgHTegDaAhHQJS+IJb+tKZ1fZQoaAZHQHD8WmHgxahoB01ZAWgIR0CUv+SOzY29dX2UKGgGR0BzGXhAGB4EaAdNCAFoCEdAlMB+jVQQ+XV9lChoBkdAcJZhn8Koh2gHTaQBaAhHQJTApfjS5RV1fZQoaAZHQHEaJTuOS4hoB0v8aAhHQJTCCXu3MIN1fZQoaAZHQEdwt03fhuRoB0vIaAhHQJTCJEH+qBF1fZQoaAZHQHGYNc4YJmdoB02BAWgIR0CUwoA8jiXIdX2UKGgGR0By3vBhx5s1aAdNLAFoCEdAlMNS08eS0XV9lChoBkdAcAF4aP0ZnGgHTQ8BaAhHQJTFoXJo0yh1fZQoaAZHQHGYbyDqW1NoB00MAWgIR0CUxlaGpMpPdX2UKGgGR0BwugOFxn3+aAdNLQFoCEdAlMZgAp8WsXV9lChoBkdAcYwTbFjur2gHTSgBaAhHQJTG7CHh0hh1fZQoaAZHQHG9e2mYSg5oB01EAWgIR0CUxytK7I1cdX2UKGgGR0BvwdqBVdX1aAdNEgFoCEdAlMd27Bfrr3V9lChoBkdAbhwOvMbFTGgHTRABaAhHQJTHiL1mJ3x1fZQoaAZHQHE10C/47BBoB01PAWgIR0CUx8LRKHwgdX2UKGgGR0BycWyhSLqEaAdL+2gIR0CUyKHoX9BKdX2UKGgGR0BvkZ+KCQLeaAdNAQFoCEdAlMjlRxcVxnV9lChoBkdAcM1HPeHi32gHS+1oCEdAlMlF7IDHO3V9lChoBkdAcZ5vSMLncWgHS/ZoCEdAlMmPmPo3aXV9lChoBkdAcPWBqKxcFGgHTTUBaAhHQJTJs0Ltu1p1fZQoaAZHQE1qsVclgMNoB0uzaAhHQJTKtZjhDPZ1fZQoaAZHQHA9syJsO5JoB00nAWgIR0CUywoVVPvbdX2UKGgGR0By1QjIJZ4faAdNHAFoCEdAlMt8CxNZeXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}