Waterboy96 commited on
Commit
6d909b8
·
1 Parent(s): 1497e98

PPO agent, steps = 1024, train = 1e6

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.27 +/- 18.04
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f02be938820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f02be9388b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f02be938940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02be9389d0>", "_build": "<function ActorCriticPolicy._build at 0x7f02be938a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f02be938af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f02be938b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f02be938c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f02be938ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f02be938d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f02be938dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f02be92ec90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673175118886472214, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1epzw4fc48JqYyPTXEcb494w27LtbsPAAAAAAAAAAAMyaVPR9l2DhGowq4D33SshthiDl2vCM3AACAPwAAgD9N7E+9ThywPf5f2T1Q6B6+VOPDPEPkwT0AAAAAAAAAAKZFHj6DdRu8itI4PKtsjbqzw3290CBruwAAgD8AAIA/gNypPVbRJT+P3QO+42B6vmjvYryimuO9AAAAAAAAAADmrBm9FEuhP0yGJL65ib2+vSk/vY322b0AAAAAAAAAADPmuL1Yq5I/a2F/vlz8vL5YPTC+m0aEvQAAAAAAAAAAgB/SvXFNLLn1h/s5T0wKPSNGWLsCWDC5AACAPwAAAABmqmM+lvd/P3Vf1j5pwOK+PPOTPn1XMT4AAAAAAAAAAA3SmT2W5Wo9YwzzPY5xKr4hOmM902i3vAAAAAAAAAAAMzwfPrZxBbwZpDi9x8ZXvqwzJzvElJg9AACAPwAAgD9tRA0+0DaqP7qIJT+hUdC+lPcVPoWrmD4AAAAAAAAAAJpu+T1mh60/l8TFPsKQub5k8VI+0mr3PQAAAAAAAAAALT04vma6+j6BkQU+K9CGvoOeVL2SZZo7AAAAAAAAAACaj4Y9ZjCcP0Juhz7bI9i+R5nAPUvX7z0AAAAAAAAAAICYET4/olA/kKq+PcCgtb5Dmdc9WOr2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIob/QI0ZrckCUhpRSlIwBbJRNEgGMAXSUR0CSCCPRiPQwdX2UKGgGaAloD0MIa2XCL/XzcECUhpRSlGgVS/NoFkdAkgjrkn1FpnV9lChoBmgJaA9DCDnyQGQRaG1AlIaUUpRoFU0oAWgWR0CSCWQ176YWdX2UKGgGaAloD0MISn8vhcdBcECUhpRSlGgVTT0BaBZHQJIJehPCVKR1fZQoaAZoCWgPQwgJGjOJegZxQJSGlFKUaBVNVQFoFkdAkgpZs41gpnV9lChoBmgJaA9DCOnvpfDg7HBAlIaUUpRoFUv8aBZHQJIKpDv3JxN1fZQoaAZoCWgPQwgMdO0L6Jk7QJSGlFKUaBVLyGgWR0CSC6KGL1mKdX2UKGgGaAloD0MIyT7IsiBOckCUhpRSlGgVTSoBaBZHQJIL4ddVvMt1fZQoaAZoCWgPQwj3Hi457sJtQJSGlFKUaBVNFwFoFkdAkg2Sih37lHV9lChoBmgJaA9DCK6ek9633HBAlIaUUpRoFU03AWgWR0CSDgX05EMLdX2UKGgGaAloD0MIAMYzaKiwcECUhpRSlGgVS/5oFkdAkg5ZnlGPP3V9lChoBmgJaA9DCGXDmsqi629AlIaUUpRoFU1CAWgWR0CSDlp++dsjdX2UKGgGaAloD0MIaHke3F1ucECUhpRSlGgVTRYBaBZHQJIPnYg7o0R1fZQoaAZoCWgPQwiJB5RN+S1xQJSGlFKUaBVNNwFoFkdAkg/zvRZ2ZHV9lChoBmgJaA9DCDiCVIrdbnBAlIaUUpRoFU0tAWgWR0CSD/TJyQxOdX2UKGgGaAloD0MIkPXU6msMcUCUhpRSlGgVTQkBaBZHQJIQpyxRl6J1fZQoaAZoCWgPQwiU+x2KwndwQJSGlFKUaBVNYAFoFkdAkhtx0dRzinV9lChoBmgJaA9DCCKl2TwOjHBAlIaUUpRoFU0TAWgWR0CSHCGRmseXdX2UKGgGaAloD0MIZCE6BE7+cECUhpRSlGgVTSgBaBZHQJIcOesgdOt1fZQoaAZoCWgPQwgtliL5Sg5xQJSGlFKUaBVNIQFoFkdAkhxzKPn0TXV9lChoBmgJaA9DCBL27STi23BAlIaUUpRoFU0YAWgWR0CSHSZ9/jKgdX2UKGgGaAloD0MIBI9v7xr+cUCUhpRSlGgVTRYBaBZHQJIdYH3UQTV1fZQoaAZoCWgPQwjvdOeJp05xQJSGlFKUaBVL+mgWR0CSHYQfZElWdX2UKGgGaAloD0MIfCb752mwRECUhpRSlGgVS8NoFkdAkh3iB9TgmHV9lChoBmgJaA9DCARws3gxdW1AlIaUUpRoFU0RAWgWR0CSHle67NB4dX2UKGgGaAloD0MI2qhOBzJvcECUhpRSlGgVTQ4BaBZHQJIfqUKRdQh1fZQoaAZoCWgPQwgBGTp2kG5wQJSGlFKUaBVNCAFoFkdAkiAXSSeRP3V9lChoBmgJaA9DCPG8VGxMb21AlIaUUpRoFU0XAWgWR0CSIIMZxaPkdX2UKGgGaAloD0MI01CjkCQIcUCUhpRSlGgVTQMBaBZHQJIhPHWBjF11fZQoaAZoCWgPQwiASpUou85xQJSGlFKUaBVNHgFoFkdAkiG59d/rjnV9lChoBmgJaA9DCLVug9ovMHFAlIaUUpRoFU0vAWgWR0CSIor6ciGGdX2UKGgGaAloD0MIwM3ixcKJcECUhpRSlGgVTRsBaBZHQJIiotYjjaR1fZQoaAZoCWgPQwhdTgmIyTNvQJSGlFKUaBVNBwFoFkdAkiLtmL9/BnV9lChoBmgJaA9DCBTP2QKCJHJAlIaUUpRoFUv4aBZHQJIjKI+GGmF1fZQoaAZoCWgPQwiynITSl59xQJSGlFKUaBVNEQFoFkdAkiQH09QoC3V9lChoBmgJaA9DCFNYqaDisHBAlIaUUpRoFU0MAWgWR0CSJWz/p+tsdX2UKGgGaAloD0MI3/yGiYbcckCUhpRSlGgVTR0BaBZHQJIlkJNTLnt1fZQoaAZoCWgPQwhnDd5X5ZdrQJSGlFKUaBVNNgFoFkdAkiWRRAKOUHV9lChoBmgJaA9DCCujkc8rf3BAlIaUUpRoFU0lAWgWR0CSJgocrAgxdX2UKGgGaAloD0MIz6Pi/45VbkCUhpRSlGgVTRkBaBZHQJImOPPszEd1fZQoaAZoCWgPQwglyt5STkFxQJSGlFKUaBVNIgFoFkdAkibr9Q40dnV9lChoBmgJaA9DCA0XuaerzW5AlIaUUpRoFU0YAWgWR0CSJ/vt+kP+dX2UKGgGaAloD0MIYeKPog5KcECUhpRSlGgVTSoBaBZHQJIpCMir1dx1fZQoaAZoCWgPQwjSb18HjmVwQJSGlFKUaBVNJAFoFkdAkilURjBl+XV9lChoBmgJaA9DCNUJaCLsoXBAlIaUUpRoFU0cAWgWR0CSNFdSVGCqdX2UKGgGaAloD0MIA3y3eWNJcUCUhpRSlGgVTRIBaBZHQJI1C8kD6nB1fZQoaAZoCWgPQwgxJv291KhxQJSGlFKUaBVNHQFoFkdAkjVUjPfKp3V9lChoBmgJaA9DCGgIxyw7y3JAlIaUUpRoFU0UAWgWR0CSNbyuIRAbdX2UKGgGaAloD0MImZoEb8heb0CUhpRSlGgVTVcBaBZHQJI1zq+rU9Z1fZQoaAZoCWgPQwga+bziaS1yQJSGlFKUaBVL/WgWR0CSNeVNYbKidX2UKGgGaAloD0MI/rj98smacUCUhpRSlGgVTRMBaBZHQJI3+thd+od1fZQoaAZoCWgPQwikx+9teqxsQJSGlFKUaBVNGAFoFkdAkjgnMEA5rHV9lChoBmgJaA9DCLu04bA0UG1AlIaUUpRoFU0NAWgWR0CSOI1R+BpYdX2UKGgGaAloD0MIqfV+ox0ecECUhpRSlGgVTX4BaBZHQJI42BBiTdN1fZQoaAZoCWgPQwhKJxJMtSZyQJSGlFKUaBVNSAFoFkdAkjmF/Ue+23V9lChoBmgJaA9DCFFmg0wymW9AlIaUUpRoFU1AAWgWR0CSOeD9OymidX2UKGgGaAloD0MIda29T9UycUCUhpRSlGgVTQkBaBZHQJI6RhE0BOp1fZQoaAZoCWgPQwiSWiiZnCVzQJSGlFKUaBVNSQFoFkdAkjsSCjDbanV9lChoBmgJaA9DCFCJ6xiXc3FAlIaUUpRoFU0NAWgWR0CSO1TDwYtQdX2UKGgGaAloD0MIsMbZdAQ4bUCUhpRSlGgVTRQBaBZHQJI7yncclw91fZQoaAZoCWgPQwiZ9PdSeNptQJSGlFKUaBVNEAFoFkdAkjzQDeTFEXV9lChoBmgJaA9DCHA/4IGBFHFAlIaUUpRoFU0aAWgWR0CSPnq6e5FxdX2UKGgGaAloD0MI7wIlBVZAcECUhpRSlGgVTTEBaBZHQJI+4h2W6bx1fZQoaAZoCWgPQwiqKck6nEFxQJSGlFKUaBVNKgFoFkdAkj87qptJnXV9lChoBmgJaA9DCG1TPC7qrXFAlIaUUpRoFU1jAWgWR0CSQGHVf/m1dX2UKGgGaAloD0MIoP1IERnrbUCUhpRSlGgVTVABaBZHQJJAfViF0xN1fZQoaAZoCWgPQwgZARWO4BdxQJSGlFKUaBVNDgFoFkdAkkDIq9XcQHV9lChoBmgJaA9DCBjQC3fuWHBAlIaUUpRoFU0iAWgWR0CSQUKYRdyDdX2UKGgGaAloD0MI6dUApSGGbUCUhpRSlGgVTSEBaBZHQJJBwJ1JUYN1fZQoaAZoCWgPQwhYVMTpJA1BQJSGlFKUaBVNAAFoFkdAkkIUIsyzonV9lChoBmgJaA9DCAKaCBve+HFAlIaUUpRoFU0mAWgWR0CSQimFrVOLdX2UKGgGaAloD0MIK2wGuCCtcECUhpRSlGgVTSwBaBZHQJJC91p0wJx1fZQoaAZoCWgPQwjuJCL8y1ZyQJSGlFKUaBVNFQFoFkdAkkMNt/FzdXV9lChoBmgJaA9DCFFM3gAz629AlIaUUpRoFUv/aBZHQJJDNG5MDfZ1fZQoaAZoCWgPQwgRABx79pxHQJSGlFKUaBVL9mgWR0CSQ5r/KhcrdX2UKGgGaAloD0MI/UtSmWIXbkCUhpRSlGgVTSMBaBZHQJJOHE4vN/x1fZQoaAZoCWgPQwjsUbgexW1yQJSGlFKUaBVNOgFoFkdAklAUIcBEKHV9lChoBmgJaA9DCCCySBPvwnBAlIaUUpRoFU0ZAWgWR0CSURcjqv/zdX2UKGgGaAloD0MIx5xn7Mvua0CUhpRSlGgVTTkBaBZHQJJR10A93bF1fZQoaAZoCWgPQwhosRTJF/BwQJSGlFKUaBVNKQFoFkdAklIGSt/4I3V9lChoBmgJaA9DCNSbUfPVC25AlIaUUpRoFU0VAWgWR0CSUopuMuOCdX2UKGgGaAloD0MIs3xdhv8BcUCUhpRSlGgVTRUBaBZHQJJS208eS0V1fZQoaAZoCWgPQwi9jjhkgxtyQJSGlFKUaBVL+mgWR0CSUvxsVLzxdX2UKGgGaAloD0MIERssnCSdbkCUhpRSlGgVTQwBaBZHQJJUCrcTJyR1fZQoaAZoCWgPQwjn/1VHDnFyQJSGlFKUaBVNRwFoFkdAklQckMTewnV9lChoBmgJaA9DCOasTzkmXm5AlIaUUpRoFU1AAWgWR0CSVbez2OABdX2UKGgGaAloD0MI5E1+i87sb0CUhpRSlGgVTSQBaBZHQJJV88JUo8Z1fZQoaAZoCWgPQwhQbtv36OxxQJSGlFKUaBVL9WgWR0CSVhOTaCcxdX2UKGgGaAloD0MIY0Si0DLSb0CUhpRSlGgVTTkBaBZHQJJWxlwtJ4B1fZQoaAZoCWgPQwia6V4n9ShwQJSGlFKUaBVNigFoFkdAklcqy0KJEnV9lChoBmgJaA9DCE4K8x5nNXJAlIaUUpRoFU1AAWgWR0CSV3Nfw7T2dX2UKGgGaAloD0MIHvtZLEVOa0CUhpRSlGgVTR8BaBZHQJJZgrRSgoR1fZQoaAZoCWgPQwg8LT9wFV9xQJSGlFKUaBVNHQFoFkdAklpsox59mnV9lChoBmgJaA9DCFKeeTksFXBAlIaUUpRoFU0ZAWgWR0CSW9mTkhicdX2UKGgGaAloD0MI1a90PvzdcECUhpRSlGgVTQwBaBZHQJJdL544ZMt1fZQoaAZoCWgPQwgddt8xPB5yQJSGlFKUaBVNEQFoFkdAkl17/sE7n3V9lChoBmgJaA9DCIJzRpT2T3BAlIaUUpRoFU0zAWgWR0CSXX1pTMq0dX2UKGgGaAloD0MID0dX6e68ckCUhpRSlGgVTVgBaBZHQJJd1AcDKYB1fZQoaAZoCWgPQwhcVIuI4r5xQJSGlFKUaBVNXQFoFkdAkl3U0elsQHV9lChoBmgJaA9DCGe0VUnk8W5AlIaUUpRoFU1DAWgWR0CSXe/EwWWQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e0a231d1fc7d18f4b1b291ca159a15bdb9aad068176458ee27b089a50700013
3
+ size 147201
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f02be938820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f02be9388b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f02be938940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02be9389d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f02be938a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f02be938af0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f02be938b80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f02be938c10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f02be938ca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f02be938d30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f02be938dc0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f02be92ec90>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1007616,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673175118886472214,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1epzw4fc48JqYyPTXEcb494w27LtbsPAAAAAAAAAAAMyaVPR9l2DhGowq4D33SshthiDl2vCM3AACAPwAAgD9N7E+9ThywPf5f2T1Q6B6+VOPDPEPkwT0AAAAAAAAAAKZFHj6DdRu8itI4PKtsjbqzw3290CBruwAAgD8AAIA/gNypPVbRJT+P3QO+42B6vmjvYryimuO9AAAAAAAAAADmrBm9FEuhP0yGJL65ib2+vSk/vY322b0AAAAAAAAAADPmuL1Yq5I/a2F/vlz8vL5YPTC+m0aEvQAAAAAAAAAAgB/SvXFNLLn1h/s5T0wKPSNGWLsCWDC5AACAPwAAAABmqmM+lvd/P3Vf1j5pwOK+PPOTPn1XMT4AAAAAAAAAAA3SmT2W5Wo9YwzzPY5xKr4hOmM902i3vAAAAAAAAAAAMzwfPrZxBbwZpDi9x8ZXvqwzJzvElJg9AACAPwAAgD9tRA0+0DaqP7qIJT+hUdC+lPcVPoWrmD4AAAAAAAAAAJpu+T1mh60/l8TFPsKQub5k8VI+0mr3PQAAAAAAAAAALT04vma6+j6BkQU+K9CGvoOeVL2SZZo7AAAAAAAAAACaj4Y9ZjCcP0Juhz7bI9i+R5nAPUvX7z0AAAAAAAAAAICYET4/olA/kKq+PcCgtb5Dmdc9WOr2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIob/QI0ZrckCUhpRSlIwBbJRNEgGMAXSUR0CSCCPRiPQwdX2UKGgGaAloD0MIa2XCL/XzcECUhpRSlGgVS/NoFkdAkgjrkn1FpnV9lChoBmgJaA9DCDnyQGQRaG1AlIaUUpRoFU0oAWgWR0CSCWQ176YWdX2UKGgGaAloD0MISn8vhcdBcECUhpRSlGgVTT0BaBZHQJIJehPCVKR1fZQoaAZoCWgPQwgJGjOJegZxQJSGlFKUaBVNVQFoFkdAkgpZs41gpnV9lChoBmgJaA9DCOnvpfDg7HBAlIaUUpRoFUv8aBZHQJIKpDv3JxN1fZQoaAZoCWgPQwgMdO0L6Jk7QJSGlFKUaBVLyGgWR0CSC6KGL1mKdX2UKGgGaAloD0MIyT7IsiBOckCUhpRSlGgVTSoBaBZHQJIL4ddVvMt1fZQoaAZoCWgPQwj3Hi457sJtQJSGlFKUaBVNFwFoFkdAkg2Sih37lHV9lChoBmgJaA9DCK6ek9633HBAlIaUUpRoFU03AWgWR0CSDgX05EMLdX2UKGgGaAloD0MIAMYzaKiwcECUhpRSlGgVS/5oFkdAkg5ZnlGPP3V9lChoBmgJaA9DCGXDmsqi629AlIaUUpRoFU1CAWgWR0CSDlp++dsjdX2UKGgGaAloD0MIaHke3F1ucECUhpRSlGgVTRYBaBZHQJIPnYg7o0R1fZQoaAZoCWgPQwiJB5RN+S1xQJSGlFKUaBVNNwFoFkdAkg/zvRZ2ZHV9lChoBmgJaA9DCDiCVIrdbnBAlIaUUpRoFU0tAWgWR0CSD/TJyQxOdX2UKGgGaAloD0MIkPXU6msMcUCUhpRSlGgVTQkBaBZHQJIQpyxRl6J1fZQoaAZoCWgPQwiU+x2KwndwQJSGlFKUaBVNYAFoFkdAkhtx0dRzinV9lChoBmgJaA9DCCKl2TwOjHBAlIaUUpRoFU0TAWgWR0CSHCGRmseXdX2UKGgGaAloD0MIZCE6BE7+cECUhpRSlGgVTSgBaBZHQJIcOesgdOt1fZQoaAZoCWgPQwgtliL5Sg5xQJSGlFKUaBVNIQFoFkdAkhxzKPn0TXV9lChoBmgJaA9DCBL27STi23BAlIaUUpRoFU0YAWgWR0CSHSZ9/jKgdX2UKGgGaAloD0MIBI9v7xr+cUCUhpRSlGgVTRYBaBZHQJIdYH3UQTV1fZQoaAZoCWgPQwjvdOeJp05xQJSGlFKUaBVL+mgWR0CSHYQfZElWdX2UKGgGaAloD0MIfCb752mwRECUhpRSlGgVS8NoFkdAkh3iB9TgmHV9lChoBmgJaA9DCARws3gxdW1AlIaUUpRoFU0RAWgWR0CSHle67NB4dX2UKGgGaAloD0MI2qhOBzJvcECUhpRSlGgVTQ4BaBZHQJIfqUKRdQh1fZQoaAZoCWgPQwgBGTp2kG5wQJSGlFKUaBVNCAFoFkdAkiAXSSeRP3V9lChoBmgJaA9DCPG8VGxMb21AlIaUUpRoFU0XAWgWR0CSIIMZxaPkdX2UKGgGaAloD0MI01CjkCQIcUCUhpRSlGgVTQMBaBZHQJIhPHWBjF11fZQoaAZoCWgPQwiASpUou85xQJSGlFKUaBVNHgFoFkdAkiG59d/rjnV9lChoBmgJaA9DCLVug9ovMHFAlIaUUpRoFU0vAWgWR0CSIor6ciGGdX2UKGgGaAloD0MIwM3ixcKJcECUhpRSlGgVTRsBaBZHQJIiotYjjaR1fZQoaAZoCWgPQwhdTgmIyTNvQJSGlFKUaBVNBwFoFkdAkiLtmL9/BnV9lChoBmgJaA9DCBTP2QKCJHJAlIaUUpRoFUv4aBZHQJIjKI+GGmF1fZQoaAZoCWgPQwiynITSl59xQJSGlFKUaBVNEQFoFkdAkiQH09QoC3V9lChoBmgJaA9DCFNYqaDisHBAlIaUUpRoFU0MAWgWR0CSJWz/p+tsdX2UKGgGaAloD0MI3/yGiYbcckCUhpRSlGgVTR0BaBZHQJIlkJNTLnt1fZQoaAZoCWgPQwhnDd5X5ZdrQJSGlFKUaBVNNgFoFkdAkiWRRAKOUHV9lChoBmgJaA9DCCujkc8rf3BAlIaUUpRoFU0lAWgWR0CSJgocrAgxdX2UKGgGaAloD0MIz6Pi/45VbkCUhpRSlGgVTRkBaBZHQJImOPPszEd1fZQoaAZoCWgPQwglyt5STkFxQJSGlFKUaBVNIgFoFkdAkibr9Q40dnV9lChoBmgJaA9DCA0XuaerzW5AlIaUUpRoFU0YAWgWR0CSJ/vt+kP+dX2UKGgGaAloD0MIYeKPog5KcECUhpRSlGgVTSoBaBZHQJIpCMir1dx1fZQoaAZoCWgPQwjSb18HjmVwQJSGlFKUaBVNJAFoFkdAkilURjBl+XV9lChoBmgJaA9DCNUJaCLsoXBAlIaUUpRoFU0cAWgWR0CSNFdSVGCqdX2UKGgGaAloD0MIA3y3eWNJcUCUhpRSlGgVTRIBaBZHQJI1C8kD6nB1fZQoaAZoCWgPQwgxJv291KhxQJSGlFKUaBVNHQFoFkdAkjVUjPfKp3V9lChoBmgJaA9DCGgIxyw7y3JAlIaUUpRoFU0UAWgWR0CSNbyuIRAbdX2UKGgGaAloD0MImZoEb8heb0CUhpRSlGgVTVcBaBZHQJI1zq+rU9Z1fZQoaAZoCWgPQwga+bziaS1yQJSGlFKUaBVL/WgWR0CSNeVNYbKidX2UKGgGaAloD0MI/rj98smacUCUhpRSlGgVTRMBaBZHQJI3+thd+od1fZQoaAZoCWgPQwikx+9teqxsQJSGlFKUaBVNGAFoFkdAkjgnMEA5rHV9lChoBmgJaA9DCLu04bA0UG1AlIaUUpRoFU0NAWgWR0CSOI1R+BpYdX2UKGgGaAloD0MIqfV+ox0ecECUhpRSlGgVTX4BaBZHQJI42BBiTdN1fZQoaAZoCWgPQwhKJxJMtSZyQJSGlFKUaBVNSAFoFkdAkjmF/Ue+23V9lChoBmgJaA9DCFFmg0wymW9AlIaUUpRoFU1AAWgWR0CSOeD9OymidX2UKGgGaAloD0MIda29T9UycUCUhpRSlGgVTQkBaBZHQJI6RhE0BOp1fZQoaAZoCWgPQwiSWiiZnCVzQJSGlFKUaBVNSQFoFkdAkjsSCjDbanV9lChoBmgJaA9DCFCJ6xiXc3FAlIaUUpRoFU0NAWgWR0CSO1TDwYtQdX2UKGgGaAloD0MIsMbZdAQ4bUCUhpRSlGgVTRQBaBZHQJI7yncclw91fZQoaAZoCWgPQwiZ9PdSeNptQJSGlFKUaBVNEAFoFkdAkjzQDeTFEXV9lChoBmgJaA9DCHA/4IGBFHFAlIaUUpRoFU0aAWgWR0CSPnq6e5FxdX2UKGgGaAloD0MI7wIlBVZAcECUhpRSlGgVTTEBaBZHQJI+4h2W6bx1fZQoaAZoCWgPQwiqKck6nEFxQJSGlFKUaBVNKgFoFkdAkj87qptJnXV9lChoBmgJaA9DCG1TPC7qrXFAlIaUUpRoFU1jAWgWR0CSQGHVf/m1dX2UKGgGaAloD0MIoP1IERnrbUCUhpRSlGgVTVABaBZHQJJAfViF0xN1fZQoaAZoCWgPQwgZARWO4BdxQJSGlFKUaBVNDgFoFkdAkkDIq9XcQHV9lChoBmgJaA9DCBjQC3fuWHBAlIaUUpRoFU0iAWgWR0CSQUKYRdyDdX2UKGgGaAloD0MI6dUApSGGbUCUhpRSlGgVTSEBaBZHQJJBwJ1JUYN1fZQoaAZoCWgPQwhYVMTpJA1BQJSGlFKUaBVNAAFoFkdAkkIUIsyzonV9lChoBmgJaA9DCAKaCBve+HFAlIaUUpRoFU0mAWgWR0CSQimFrVOLdX2UKGgGaAloD0MIK2wGuCCtcECUhpRSlGgVTSwBaBZHQJJC91p0wJx1fZQoaAZoCWgPQwjuJCL8y1ZyQJSGlFKUaBVNFQFoFkdAkkMNt/FzdXV9lChoBmgJaA9DCFFM3gAz629AlIaUUpRoFUv/aBZHQJJDNG5MDfZ1fZQoaAZoCWgPQwgRABx79pxHQJSGlFKUaBVL9mgWR0CSQ5r/KhcrdX2UKGgGaAloD0MI/UtSmWIXbkCUhpRSlGgVTSMBaBZHQJJOHE4vN/x1fZQoaAZoCWgPQwjsUbgexW1yQJSGlFKUaBVNOgFoFkdAklAUIcBEKHV9lChoBmgJaA9DCCCySBPvwnBAlIaUUpRoFU0ZAWgWR0CSURcjqv/zdX2UKGgGaAloD0MIx5xn7Mvua0CUhpRSlGgVTTkBaBZHQJJR10A93bF1fZQoaAZoCWgPQwhosRTJF/BwQJSGlFKUaBVNKQFoFkdAklIGSt/4I3V9lChoBmgJaA9DCNSbUfPVC25AlIaUUpRoFU0VAWgWR0CSUopuMuOCdX2UKGgGaAloD0MIs3xdhv8BcUCUhpRSlGgVTRUBaBZHQJJS208eS0V1fZQoaAZoCWgPQwi9jjhkgxtyQJSGlFKUaBVL+mgWR0CSUvxsVLzxdX2UKGgGaAloD0MIERssnCSdbkCUhpRSlGgVTQwBaBZHQJJUCrcTJyR1fZQoaAZoCWgPQwjn/1VHDnFyQJSGlFKUaBVNRwFoFkdAklQckMTewnV9lChoBmgJaA9DCOasTzkmXm5AlIaUUpRoFU1AAWgWR0CSVbez2OABdX2UKGgGaAloD0MI5E1+i87sb0CUhpRSlGgVTSQBaBZHQJJV88JUo8Z1fZQoaAZoCWgPQwhQbtv36OxxQJSGlFKUaBVL9WgWR0CSVhOTaCcxdX2UKGgGaAloD0MIY0Si0DLSb0CUhpRSlGgVTTkBaBZHQJJWxlwtJ4B1fZQoaAZoCWgPQwia6V4n9ShwQJSGlFKUaBVNigFoFkdAklcqy0KJEnV9lChoBmgJaA9DCE4K8x5nNXJAlIaUUpRoFU1AAWgWR0CSV3Nfw7T2dX2UKGgGaAloD0MIHvtZLEVOa0CUhpRSlGgVTR8BaBZHQJJZgrRSgoR1fZQoaAZoCWgPQwg8LT9wFV9xQJSGlFKUaBVNHQFoFkdAklpsox59mnV9lChoBmgJaA9DCFKeeTksFXBAlIaUUpRoFU0ZAWgWR0CSW9mTkhicdX2UKGgGaAloD0MI1a90PvzdcECUhpRSlGgVTQwBaBZHQJJdL544ZMt1fZQoaAZoCWgPQwgddt8xPB5yQJSGlFKUaBVNEQFoFkdAkl17/sE7n3V9lChoBmgJaA9DCIJzRpT2T3BAlIaUUpRoFU0zAWgWR0CSXX1pTMq0dX2UKGgGaAloD0MID0dX6e68ckCUhpRSlGgVTVgBaBZHQJJd1AcDKYB1fZQoaAZoCWgPQwhcVIuI4r5xQJSGlFKUaBVNXQFoFkdAkl3U0elsQHV9lChoBmgJaA9DCGe0VUnk8W5AlIaUUpRoFU1DAWgWR0CSXe/EwWWQdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 512,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1b6638a4ae5f4e2af6ff17eb74a3f07ae53037c2ddf52d5d4faf109ea6f9c6c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a63a08052d5e325afe4b8dcaff3cadccde95bebbac10ff0d89fcf84993a0457e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (210 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.27113169813566, "std_reward": 18.035924368625476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T11:13:07.054413"}