Watheq commited on
Commit
1368771
·
1 Parent(s): 017d60c

First commit

Browse files
Files changed (2) hide show
  1. README.md +54 -0
  2. config.json +61 -0
README.md CHANGED
@@ -1,3 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
  ---
 
1
+
2
+ # TRL Model
3
+
4
+ This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
5
+
6
+ ## Usage
7
+
8
+ This model is a part of a study explained here on document expansion using Doc2Query. Please cite the paper if you use it.
9
+ To use this model for inference, first install the TRL library:
10
+
11
+ ```bash
12
+ pip install trl
13
+ ```
14
+
15
+ You can then generate text as follows:
16
+
17
+ ```python
18
+ from transformers import pipeline
19
+
20
+ generator = pipeline("text-generation", model="watheq/d2q_monoELECTRA_1400")
21
+ outputs = generator("Hello, my llama is cute")
22
+ ```
23
+
24
+ If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
25
+
26
+ ```python
27
+ from transformers import AutoTokenizer
28
+ from trl import AutoModelForCausalLMWithValueHead
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained("watheq/d2q_monoELECTRA_1400")
31
+ model = AutoModelForCausalLMWithValueHead.from_pretrained("watheq/d2q_monoELECTRA_1400")
32
+
33
+ inputs = tokenizer("Coffee is a beverage brewed from roasted coffee beans. Coffee has a stimulating effect on humans, primarily due to its caffeine content.", return_tensors="pt")
34
+ outputs = model(**inputs, labels=inputs["input_ids"])
35
+ ```
36
+
37
+
38
+
39
+ ## Citation
40
+
41
+ If you used any piece of this repository, please consider citing our work :
42
+
43
+ ```plaintext
44
+ @inproceedings{mansour2024revisit,
45
+ title={Revisiting Document Expansion and Filtering for Effective First-Stage Retrieval},
46
+ author={Mansour, Watheq and Zhuang, Shengyao and Zhuang, Guido and Mackenzie, Joel},
47
+ booktitle = {Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval},
48
+ year={2024},
49
+ publisher = {Association for Computing Machinery},
50
+ series = {SIGIR '24}
51
+ }
52
+ ```
53
+
54
+
55
  ---
56
  license: cc-by-4.0
57
  ---
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "castorini/doc2query-t5-base-msmarco",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "classifier_dropout": 0.0,
7
+ "d_ff": 3072,
8
+ "d_kv": 64,
9
+ "d_model": 768,
10
+ "decoder_start_token_id": 0,
11
+ "dense_act_fn": "relu",
12
+ "dropout_rate": 0.1,
13
+ "eos_token_id": 1,
14
+ "feed_forward_proj": "relu",
15
+ "initializer_factor": 1.0,
16
+ "is_encoder_decoder": true,
17
+ "is_gated_act": false,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "model_type": "t5",
20
+ "n_positions": 512,
21
+ "num_decoder_layers": 12,
22
+ "num_heads": 12,
23
+ "num_layers": 12,
24
+ "output_past": true,
25
+ "pad_token_id": 0,
26
+ "relative_attention_max_distance": 128,
27
+ "relative_attention_num_buckets": 32,
28
+ "task_specific_params": {
29
+ "summarization": {
30
+ "early_stopping": true,
31
+ "length_penalty": 2.0,
32
+ "max_length": 200,
33
+ "min_length": 30,
34
+ "no_repeat_ngram_size": 3,
35
+ "num_beams": 4,
36
+ "prefix": "summarize: "
37
+ },
38
+ "translation_en_to_de": {
39
+ "early_stopping": true,
40
+ "max_length": 300,
41
+ "num_beams": 4,
42
+ "prefix": "translate English to German: "
43
+ },
44
+ "translation_en_to_fr": {
45
+ "early_stopping": true,
46
+ "max_length": 300,
47
+ "num_beams": 4,
48
+ "prefix": "translate English to French: "
49
+ },
50
+ "translation_en_to_ro": {
51
+ "early_stopping": true,
52
+ "max_length": 300,
53
+ "num_beams": 4,
54
+ "prefix": "translate English to Romanian: "
55
+ }
56
+ },
57
+ "torch_dtype": "float32",
58
+ "transformers_version": "4.35.2",
59
+ "use_cache": true,
60
+ "vocab_size": 32128
61
+ }