File size: 8,130 Bytes
e8ffc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include <stdio.h>
#include <stdlib.h>

#include "cuda_utils.h"
#include "sampling_gpu.h"


__global__ void gather_points_kernel_fast(int b, int c, int n, int m, 
    const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
    // points: (B, C, N)
    // idx: (B, M)
    // output:
    //      out: (B, C, M)

    int bs_idx = blockIdx.z;
    int c_idx = blockIdx.y;
    int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;

    out += bs_idx * c * m + c_idx * m + pt_idx;
    idx += bs_idx * m + pt_idx;
    points += bs_idx * c * n + c_idx * n;
    out[0] = points[idx[0]];
}

void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints, 
    const float *points, const int *idx, float *out) {
    // points: (B, C, N)
    // idx: (B, npoints)
    // output:
    //      out: (B, C, npoints)

    cudaError_t err;
    dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b);  // blockIdx.x(col), blockIdx.y(row)
    dim3 threads(THREADS_PER_BLOCK);

    gather_points_kernel_fast<<<blocks, threads>>>(b, c, n, npoints, points, idx, out);

    err = cudaGetLastError();
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }
}

__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out, 
    const int *__restrict__ idx, float *__restrict__ grad_points) {
    // grad_out: (B, C, M)
    // idx: (B, M)
    // output:
    //      grad_points: (B, C, N)

    int bs_idx = blockIdx.z;
    int c_idx = blockIdx.y;
    int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;

    grad_out += bs_idx * c * m + c_idx * m + pt_idx;
    idx += bs_idx * m + pt_idx;
    grad_points += bs_idx * c * n + c_idx * n;

    atomicAdd(grad_points + idx[0], grad_out[0]);
}

void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, 
    const float *grad_out, const int *idx, float *grad_points) {
    // grad_out: (B, C, npoints)
    // idx: (B, npoints)
    // output:
    //      grad_points: (B, C, N)

    cudaError_t err;
    dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b);  // blockIdx.x(col), blockIdx.y(row)
    dim3 threads(THREADS_PER_BLOCK);

    gather_points_grad_kernel_fast<<<blocks, threads>>>(b, c, n, npoints, grad_out, idx, grad_points);

    err = cudaGetLastError();
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }
}


__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
    const float v1 = dists[idx1], v2 = dists[idx2];
    const int i1 = dists_i[idx1], i2 = dists_i[idx2];
    dists[idx1] = max(v1, v2);
    dists_i[idx1] = v2 > v1 ? i2 : i1;
}

template <unsigned int block_size>
__global__ void furthest_point_sampling_kernel(int b, int c, int n, int m, float w1, float w2,
    const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
    // dataset: (B, N, 3)
    // tmp: (B, N)
    // output:
    //      idx: (B, M)

    if (m <= 0) return;
    __shared__ float dists[block_size];
    __shared__ int dists_i[block_size];

    int batch_index = blockIdx.x;
    dataset += batch_index * n * c;
    temp += batch_index * n;
    idxs += batch_index * m;

    int tid = threadIdx.x;
    const int stride = block_size;

    int old = 0;
    if (threadIdx.x == 0)
    idxs[0] = old;

    __syncthreads();
    for (int j = 1; j < m; j++) {
    int besti = 0;
    float best = -1;
    float x1 = dataset[old * c + 0];
    float y1 = dataset[old * c + 1];
    float z1 = dataset[old * c + 2];

    for (int k = tid; k < n; k += stride) {
        float x2, y2, z2;
        x2 = dataset[k * c + 0];
        y2 = dataset[k * c + 1];
        z2 = dataset[k * c + 2];
        // float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
        // if (mag <= 1e-3)
        // continue;

        float xyz_d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
        float fea_d = 0;
        for (int l = 3; l < c; l++) {
        fea_d += (dataset[old * c + l] - dataset[k * c + l]) * (dataset[old * c + l] - dataset[k * c + l]);
        }
        float d = w1 * xyz_d + w2 * fea_d;
        float d2 = min(d, temp[k]);
        temp[k] = d2;
        besti = d2 > best ? k : besti;
        best = d2 > best ? d2 : best;
    }
    dists[tid] = best;
    dists_i[tid] = besti;
    __syncthreads();

    if (block_size >= 1024) {
        if (tid < 512) {
            __update(dists, dists_i, tid, tid + 512);
        }
        __syncthreads();
    }

    if (block_size >= 512) {
        if (tid < 256) {
            __update(dists, dists_i, tid, tid + 256);
        }
        __syncthreads();
    }
    if (block_size >= 256) {
        if (tid < 128) {
            __update(dists, dists_i, tid, tid + 128);
        }
        __syncthreads();
    }
    if (block_size >= 128) {
        if (tid < 64) {
            __update(dists, dists_i, tid, tid + 64);
        }
        __syncthreads();
    }
    if (block_size >= 64) {
        if (tid < 32) {
            __update(dists, dists_i, tid, tid + 32);
        }
        __syncthreads();
    }
    if (block_size >= 32) {
        if (tid < 16) {
            __update(dists, dists_i, tid, tid + 16);
        }
        __syncthreads();
    }
    if (block_size >= 16) {
        if (tid < 8) {
            __update(dists, dists_i, tid, tid + 8);
        }
        __syncthreads();
    }
    if (block_size >= 8) {
        if (tid < 4) {
            __update(dists, dists_i, tid, tid + 4);
        }
        __syncthreads();
    }
    if (block_size >= 4) {
        if (tid < 2) {
            __update(dists, dists_i, tid, tid + 2);
        }
        __syncthreads();
    }
    if (block_size >= 2) {
        if (tid < 1) {
            __update(dists, dists_i, tid, tid + 1);
        }
        __syncthreads();
    }

    old = dists_i[0];
    if (tid == 0)
        idxs[j] = old;
    }
}

void furthest_point_sampling_kernel_launcher(int b, int c, int n, int m, float w1, float w2,
    const float *dataset, float *temp, int *idxs) {
    // dataset: (B, N, 3)
    // tmp: (B, N)
    // output:
    //      idx: (B, M)

    cudaError_t err;
    unsigned int n_threads = opt_n_threads(n);

    switch (n_threads) {
        case 1024:
        furthest_point_sampling_kernel<1024><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 512:
        furthest_point_sampling_kernel<512><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 256:
        furthest_point_sampling_kernel<256><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 128:
        furthest_point_sampling_kernel<128><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 64:
        furthest_point_sampling_kernel<64><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 32:
        furthest_point_sampling_kernel<32><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 16:
        furthest_point_sampling_kernel<16><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 8:
        furthest_point_sampling_kernel<8><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 4:
        furthest_point_sampling_kernel<4><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 2:
        furthest_point_sampling_kernel<2><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        case 1:
        furthest_point_sampling_kernel<1><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs); break;
        default:
        furthest_point_sampling_kernel<512><<<b, n_threads>>>(b, c, n, m, w1, w2, dataset, temp, idxs);
    }

    err = cudaGetLastError();
    if (cudaSuccess != err) {
        fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
        exit(-1);
    }
}