|
#include <torch/serialize/tensor.h> |
|
#include <vector> |
|
|
|
#include <cuda.h> |
|
#include <cuda_runtime_api.h> |
|
#include "ball_query_gpu.h" |
|
|
|
|
|
|
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <ATen/cuda/CUDAEvent.h> |
|
|
|
|
|
#define CHECK_CUDA(x) do { \ |
|
if (!x.type().is_cuda()) { \ |
|
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ |
|
exit(-1); \ |
|
} \ |
|
} while (0) |
|
#define CHECK_CONTIGUOUS(x) do { \ |
|
if (!x.is_contiguous()) { \ |
|
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ |
|
exit(-1); \ |
|
} \ |
|
} while (0) |
|
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) |
|
|
|
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample, |
|
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) { |
|
CHECK_INPUT(new_xyz_tensor); |
|
CHECK_INPUT(xyz_tensor); |
|
const float *new_xyz = new_xyz_tensor.data<float>(); |
|
const float *xyz = xyz_tensor.data<float>(); |
|
int *idx = idx_tensor.data<int>(); |
|
|
|
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx); |
|
return 1; |
|
} |
|
|
|
|
|
int ball_center_query_wrapper_fast(int b, int n, int m, float radius, |
|
at::Tensor point_tensor, at::Tensor key_point_tensor, at::Tensor idx_tensor) { |
|
CHECK_INPUT(point_tensor); |
|
CHECK_INPUT(key_point_tensor); |
|
const float *point = point_tensor.data<float>(); |
|
const float *key_point = key_point_tensor.data<float>(); |
|
int *idx = idx_tensor.data<int>(); |
|
|
|
ball_center_query_kernel_launcher_fast(b, n, m, radius, point, key_point, idx); |
|
return 1; |
|
} |
|
|
|
|
|
int knn_query_wrapper_fast(int b, int n, int m, int nsample, |
|
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) { |
|
CHECK_INPUT(new_xyz_tensor); |
|
CHECK_INPUT(xyz_tensor); |
|
const float *new_xyz = new_xyz_tensor.data<float>(); |
|
const float *xyz = xyz_tensor.data<float>(); |
|
float *dist2 = dist2_tensor.data<float>(); |
|
int *idx = idx_tensor.data<int>(); |
|
|
|
knn_query_kernel_launcher_fast(b, n, m, nsample, new_xyz, xyz, dist2, idx); |
|
return 1; |
|
} |
|
|
|
|
|
int ball_query_wrapper_stack(int B, int M, float radius, int nsample, |
|
at::Tensor new_xyz_tensor, at::Tensor new_xyz_batch_cnt_tensor, |
|
at::Tensor xyz_tensor, at::Tensor xyz_batch_cnt_tensor, at::Tensor idx_tensor) { |
|
CHECK_INPUT(new_xyz_tensor); |
|
CHECK_INPUT(xyz_tensor); |
|
CHECK_INPUT(new_xyz_batch_cnt_tensor); |
|
CHECK_INPUT(xyz_batch_cnt_tensor); |
|
|
|
const float *new_xyz = new_xyz_tensor.data<float>(); |
|
const float *xyz = xyz_tensor.data<float>(); |
|
const int *new_xyz_batch_cnt = new_xyz_batch_cnt_tensor.data<int>(); |
|
const int *xyz_batch_cnt = xyz_batch_cnt_tensor.data<int>(); |
|
int *idx = idx_tensor.data<int>(); |
|
|
|
ball_query_kernel_launcher_stack(B, M, radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx); |
|
return 1; |
|
} |