#include #include #include #include // #include #include "group_points_gpu.h" // extern THCState *state; #include #include // cudaStream_t stream = at::cuda::getCurrentCUDAStream(); #define CHECK_CUDA(x) do { \ if (!x.type().is_cuda()) { \ fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ exit(-1); \ } \ } while (0) #define CHECK_CONTIGUOUS(x) do { \ if (!x.is_contiguous()) { \ fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ exit(-1); \ } \ } while (0) #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample, at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) { float *grad_points = grad_points_tensor.data(); const int *idx = idx_tensor.data(); const float *grad_out = grad_out_tensor.data(); group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points); return 1; } int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample, at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) { const float *points = points_tensor.data(); const int *idx = idx_tensor.data(); float *out = out_tensor.data(); group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out); return 1; } int group_points_grad_wrapper_stack(int B, int M, int C, int N, int nsample, at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor idx_batch_cnt_tensor, at::Tensor features_batch_cnt_tensor, at::Tensor grad_features_tensor) { CHECK_INPUT(grad_out_tensor); CHECK_INPUT(idx_tensor); CHECK_INPUT(idx_batch_cnt_tensor); CHECK_INPUT(features_batch_cnt_tensor); CHECK_INPUT(grad_features_tensor); const float *grad_out = grad_out_tensor.data(); const int *idx = idx_tensor.data(); const int *idx_batch_cnt = idx_batch_cnt_tensor.data(); const int *features_batch_cnt = features_batch_cnt_tensor.data(); float *grad_features = grad_features_tensor.data(); group_points_grad_kernel_launcher_stack(B, M, C, N, nsample, grad_out, idx, idx_batch_cnt, features_batch_cnt, grad_features); return 1; } int group_points_wrapper_stack(int B, int M, int C, int nsample, at::Tensor features_tensor, at::Tensor features_batch_cnt_tensor, at::Tensor idx_tensor, at::Tensor idx_batch_cnt_tensor, at::Tensor out_tensor) { CHECK_INPUT(features_tensor); CHECK_INPUT(features_batch_cnt_tensor); CHECK_INPUT(idx_tensor); CHECK_INPUT(idx_batch_cnt_tensor); CHECK_INPUT(out_tensor); const float *features = features_tensor.data(); const int *idx = idx_tensor.data(); const int *features_batch_cnt = features_batch_cnt_tensor.data(); const int *idx_batch_cnt = idx_batch_cnt_tensor.data(); float *out = out_tensor.data(); group_points_kernel_launcher_stack(B, M, C, nsample, features, features_batch_cnt, idx, idx_batch_cnt, out); return 1; }