Safetensors
English
Chinese
custom_code
File size: 36,428 Bytes
ab3e620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
from functools import partial
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_llama import CustomLlamaConfig

try:
    from apex.megatron_layer_norm import MixedFusedLayerNorm as LayerNorm
except ImportError:
    from torch.nn import LayerNorm

USE_FLASH_ATTN = False
try:
    import flash_attn
    if version.parse(flash_attn.__version__) >= version.parse("2.1.0"):
        USE_FLASH_ATTN = True
        from flash_attn import flash_attn_func, flash_attn_varlen_func
        from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
except ImportError:
    pass

logger = logging.get_logger(__name__)


def _get_unpad_data(attention_mask):
    seqlens_in_batch = (attention_mask).sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0,
                       dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def get_norm(config: CustomLlamaConfig):
    norm_type = config.norm_type
    if norm_type == 'rms_norm':
        return partial(RMSNorm, eps=config.layernorm_epsilon)
    elif norm_type == 'layer_norm':
        return partial(LayerNorm, eps=config.layernorm_epsilon)
    else:
        raise ValueError(f'Unsupported norm type: {norm_type}')


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size,
    dtype: torch.dtype,
    device: torch.device,
    past_key_values_length: int = 0,
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len),
                      torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat(
            [
                torch.zeros(
                    tgt_len, past_key_values_length, dtype=dtype, device=device
                ),
                mask,
            ],
            dim=-1,
        )
    return mask[None, None, :, :].expand(
        bsz, 1, tgt_len, tgt_len + past_key_values_length
    )


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(
        bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(
        inverted_mask.to(torch.bool), torch.finfo(dtype).min
    )


class RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, base=10000, compress=1.0):
        super().__init__()
        self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.seq_len_cached = 0
        self.cos_cached = None
        self.sin_cached = None
        self.compress = compress

    def forward(self, x, seq_len):
        if seq_len > self.seq_len_cached:
            self.seq_len_cached = seq_len
            self.inv_freq = self.inv_freq.to(x.device)
            t = (
                torch.arange(seq_len, device=self.inv_freq.device,
                             dtype=self.inv_freq.dtype)
                * self.compress
            )
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos()[None, None, :, :]
            self.sin_cached = emb.sin()[None, None, :, :]
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]


# rotary pos emb helpers:


def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
    cos, sin = (
        cos[..., offset: q.shape[-2] + offset, :],
        sin[..., offset: q.shape[-2] + offset, :],
    )
    q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
    k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
    return q_embed.to(q.dtype), k_embed.to(k.dtype)


def apply_rotary_pos_emb_torch(
    q, k, cos, sin, offset: int = 0
):  # jitting fails with bf16
    cos, sin = (
        cos[..., offset: q.shape[-2] + offset, :],
        sin[..., offset: q.shape[-2] + offset, :],
    )
    q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
    k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
    return q_embed.to(q.dtype), k_embed.to(k.dtype)


class CustomLlamaAttention(nn.Module):
    def __init__(self, config: CustomLlamaConfig):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads
        self.num_kv_heads = config.num_kv_heads
        self.hidden_size = config.hidden_size
        self.head_size = self.hidden_size // self.num_attention_heads
        self.rotary_ndims = int(self.head_size * config.rotary_pct)
        self.max_positions = config.max_position_embeddings
        self.rotary_emb = RotaryEmbedding(
            self.rotary_ndims,
            base=config.rotary_emb_base,
            compress=config.rotary_compress,
        )
        self.norm_factor = torch.sqrt(
            torch.tensor(self.head_size, dtype=torch.float32)
        ).to(torch.get_default_dtype())

        if self.use_gqa:
            self.query_dense = nn.Linear(
                config.hidden_size,
                config.hidden_size,
                bias=getattr(config, "qkv_proj_bias", True)
            )
            self.key_value_dense = nn.Linear(
                config.hidden_size,
                self.head_size * 2 * config.num_kv_heads,
                bias=getattr(config, "qkv_proj_bias", True),
            )
        else:
            self.query_key_value = nn.Linear(
                config.hidden_size,
                3 * config.hidden_size,
                bias=getattr(config, "qkv_proj_bias", True),
            )

        self.dense = nn.Linear(
            config.hidden_size,
            config.hidden_size,
            bias=getattr(config, "out_proj_bias", True),
        )
        self.apply_rotary_fn = (
            apply_rotary_pos_emb_torch
            if config.torch_dtype == torch.bfloat16
            else apply_rotary_pos_emb
        )

    @property
    def use_gqa(self):
        return self.num_kv_heads < self.num_attention_heads

    def forward(
        self,
        hidden_states,
        attention_mask,
        head_mask=None,
        layer_past=None,
        use_cache=False,
        output_attentions=False,
    ):
        has_layer_past = layer_past is not None

        if self.use_gqa:
            # Compute Q
            # [batch, seq_len, hidden_size] --> [batch_size, seq_len, (num_heads * head_size)]
            q = self.query_dense(hidden_states)

            # [batch_size, seq_len, (num_heads * head_size)]
            #     --> [batch, seq_len, num_attention_heads, head_size]
            new_q_shape = q.size()[:-1] + \
                (self.num_attention_heads, self.head_size)
            q = q.view(*new_q_shape)

            # Compute KV
            # [batch, seq_len, hidden_size] --> [batch_size, seq_len, (num_attention_groups * 2 * head_size)]
            kv = self.key_value_dense(hidden_states)

            # [batch, seq_len, (num_attention_groups * 2 * head_size)]
            #   --> [batch, seq_len, num_attention_groups, 2 * head_size]
            new_kv_shape = kv.size()[:-1] + (
                self.num_kv_heads,
                2 * self.head_size,
            )
            kv = kv.view(*new_kv_shape)

            # [batch, num_attention_heads, seq_len, head_size]
            query = q.permute(0, 2, 1, 3)
            # [batch, num_attention_groups, seq_len, head_size]
            key = kv[..., : self.head_size].permute(0, 2, 1, 3)
            value = kv[..., self.head_size:].permute(0, 2, 1, 3)
        else:
            # Compute QKV
            # Attention heads [batch, seq_len, hidden_size]
            #   --> [batch, seq_len, (np * 3 * head_size)]
            qkv = self.query_key_value(hidden_states)

            # [batch, seq_len, (num_heads * 3 * head_size)]
            #   --> [batch, seq_len, num_heads, 3 * head_size]
            new_qkv_shape = qkv.size()[:-1] + (
                self.num_attention_heads,
                3 * self.head_size,
            )
            qkv = qkv.view(*new_qkv_shape)

            # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
            query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
            key = qkv[..., self.head_size: 2 *
                      self.head_size].permute(0, 2, 1, 3)
            value = qkv[..., 2 * self.head_size:].permute(0, 2, 1, 3)

        # Compute rotary embeddings on rotary_ndims
        query_rot = query[..., : self.rotary_ndims]
        query_pass = query[..., self.rotary_ndims:]
        key_rot = key[..., : self.rotary_ndims]
        key_pass = key[..., self.rotary_ndims:]

        # Compute token offset for rotary embeddings (when decoding)
        seq_len = key.shape[-2]
        offset = 0
        if has_layer_past:
            offset = layer_past[0].shape[-2]
            seq_len += offset
        cos, sin = self.rotary_emb(value, seq_len=seq_len)
        query, key = self.apply_rotary_fn(
            query_rot, key_rot, cos, sin, offset=offset)
        query = torch.cat((query, query_pass), dim=-1)
        key = torch.cat((key, key_pass), dim=-1)

        # Cache QKV values
        if has_layer_past:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)
        present = (key, value) if use_cache else None

        if USE_FLASH_ATTN:
            # Compute attention
            attn_output, attn_weights = self._flash_attn(
                query, key, value, attention_mask, head_mask
            )

            # from [batch_size, ]
            attn_output = attn_output.reshape(
                attn_output.size(0), attn_output.size(1), self.hidden_size).contiguous()
        else:
            # Compute attention
            attn_output, attn_weights = self._attn(
                query, key, value, attention_mask, head_mask
            )

            # Reshape outputs
            attn_output = self._merge_heads(
                attn_output, self.num_attention_heads, self.head_size
            )
        attn_output = self.dense(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs

    @classmethod
    def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
        """
        Splits hidden dim into attn_head_size and num_attention_heads
        """
        # tensor: [bs, seq_len, hidden_size]
        new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
        # -> [bs, seq_len, num_attention_heads, attn_head_size]
        tensor = tensor.view(new_shape)
        # -> [bs, num_attention_heads, seq_len, attn_head_size]
        tensor = tensor.permute(0, 2, 1, 3)
        return tensor

    @classmethod
    def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
        """
        # tensor [bs, num_attention_heads, seq_len, attn_head_size]
        tensor = tensor.permute(0, 2, 1, 3).contiguous()
        # -> [bs, seq_len, num_attention_heads, attn_head_size]
        tensor = tensor.view(
            tensor.size(0), tensor.size(
                1), num_attention_heads * attn_head_size
        )
        # -> [bs, seq_len, hidden_size]
        return tensor

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # q: [bs, num_attention_heads, seq_len, attn_head_size]
        # k,v: [bs, num_attention_groups, seq_len, attn_head_size]
        # compute causal mask from causal mask buffer
        batch_size, num_attention_heads, query_length, attn_head_size = query.size()
        _, num_attention_groups, key_length, _ = key.size()

        group_size = num_attention_heads // num_attention_groups

        if not self.use_gqa:
            assert group_size == 1

        # repeat key and value, so we can use normal MHA algorithm
        key = (
            key.view(batch_size, num_attention_groups,
                     1, key_length, attn_head_size)
            .repeat(1, 1, group_size, 1, 1)
            .view(batch_size, num_attention_heads, key_length, attn_head_size)
        )
        value = (
            value.view(batch_size, num_attention_groups,
                       1, key_length, attn_head_size)
            .repeat(1, 1, group_size, 1, 1)
            .view(batch_size, num_attention_heads, key_length, attn_head_size)
        )

        query = query.view(
            batch_size * num_attention_heads, query_length, attn_head_size
        )
        key = key.view(batch_size * num_attention_heads,
                       key_length, attn_head_size)
        attn_scores = torch.zeros(
            batch_size * num_attention_heads,
            query_length,
            key_length,
            dtype=query.dtype,
            device=key.device,
        )
        attn_scores = torch.baddbmm(
            attn_scores,
            query,
            key.transpose(1, 2),
            beta=1.0,
            alpha=(
                torch.tensor(
                    1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device
                )
                / self.norm_factor
            ),
        )
        attn_scores = attn_scores.view(
            batch_size, num_attention_heads, query_length, key_length
        )

        mask_value = torch.finfo(attn_scores.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(
            attn_scores.device
        )

        if attention_mask is not None:
            # Apply the attention mask
            attn_scores = attn_scores + attention_mask

        attn_weights = nn.functional.softmax(attn_scores, dim=-1)
        attn_weights = attn_weights.to(value.dtype)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)
        return attn_output, attn_weights

    def _flash_attn(self, query, key, value, attention_mask=None, head_mask=None):
        assert head_mask is None, "head_mask is not supported in _flash_attn"
        # q: [bs, num_attention_heads, seq_len, attn_head_size]
        # k,v: [bs, num_attention_groups, seq_len, attn_head_size]

        # flash_attn need the layout to be [batch_size, sequence_length, num_heads, head_dim]
        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        query_length = query.size(1)
        causal = query_length != 1

        if attention_mask is not None:
            batch_size = query.size(0)
            query, key, value, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query, key, value, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query,
                key,
                value,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=0,
                causal=causal,
            )

            attn_output = pad_input(
                attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query, key, value, 0, causal=causal
            )

        return attn_output, None

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
            attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
        num_attention_heads = query_layer.shape[2]

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len,
                              num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len,
                                num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len,
                                    num_attention_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
                query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


def swiglu(x):
    x1, x2 = x.chunk(2, dim=(x.ndim - 1))
    return x1 * torch.nn.functional.silu(x2)


def get_activation(act_name: str):
    if act_name == "gelu":
        return ACT2FN["gelu_new"]
    elif act_name == "swiglu":
        return swiglu
    else:
        return ACT2FN[act_name]


class CustomLlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        h_to_4h_out_channels = (
            config.ffn_hidden_size * 2
            if config.hidden_act == "swiglu"
            else config.ffn_hidden_size
        )
        self.dense_h_to_4h = nn.Linear(
            config.hidden_size,
            h_to_4h_out_channels,
            bias=getattr(config, "mlp_fc1_bias", True)
        )
        self.dense_4h_to_h = nn.Linear(
            config.ffn_hidden_size,
            config.hidden_size,
            bias=getattr(config, "mlp_fc2_bias", True)
        )
        self.act = get_activation(config.hidden_act)

    def forward(self, hidden_states):
        hidden_states = self.dense_h_to_4h(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.dense_4h_to_h(hidden_states)
        return hidden_states


class CustomLlamaLayer(nn.Module):
    def __init__(self, config):
        super().__init__()

        norm_func = get_norm(config)
        self.input_layernorm = norm_func(config.hidden_size)
        self.post_attention_layernorm = norm_func(config.hidden_size)
        self.attention = CustomLlamaAttention(config)
        self.mlp = CustomLlamaMLP(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        use_cache=False,
        layer_past=None,
        output_attentions=False,
    ):
        attn_in = self.input_layernorm(hidden_states)
        attention_layer_outputs = self.attention(
            attn_in,
            attention_mask=attention_mask,
            layer_past=layer_past,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attention_layer_outputs[
            0
        ]  # output_attn: attn_output, present, (attn_weights)
        outputs = attention_layer_outputs[1:]
        # pseudocode:
        # x = x + attn(ln1(x))
        # x = x + mlp(ln2(x))
        attn_output = attn_output + hidden_states
        mlp_input = self.post_attention_layernorm(attn_output)
        mlp_output = self.mlp(mlp_input)
        hidden_states = mlp_output + attn_output

        if use_cache:
            outputs = (
                hidden_states,
            ) + outputs  # hidden_states, present, (attn_weights)
        else:
            # hidden_states, (attn_weights)
            outputs = (hidden_states,) + outputs[1:]

        return outputs


class CustomLlamaPreTrainedModel(PreTrainedModel):
    config_class = CustomLlamaConfig
    base_model_prefix = "lm"
    _no_split_modules = ["CustomLlamaLayer"]


class CustomLlamaModel(CustomLlamaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList(
            [CustomLlamaLayer(config) for _ in range(config.num_layers)]
        )

        norm_func = get_norm(config)
        self.final_layer_norm = norm_func(config.hidden_size)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_in

    def set_input_embeddings(self, value):
        self.embed_in = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(
        self, attention_mask, input_shape, inputs_embeds, past_key_values_length
    ):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            ).to(inputs_embeds.device)
            combined_attention_mask = (
                expanded_attn_mask
                if combined_attention_mask is None
                else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        r"""
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        else:
            past_key_values = tuple([None] * self.config.num_layers)

        if inputs_embeds is None:
            inputs_embeds = self.embed_in(input_ids)
        # Attention mask.
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past),
                dtype=torch.bool,
                device=inputs_embeds.device,
            )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_layers x num_heads]
        # and head_mask is converted to shape [num_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)

        if USE_FLASH_ATTN:
            attention_mask = attention_mask if (
                attention_mask is not None and 0 in attention_mask) else None
        else:
            attention_mask = self._prepare_decoder_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )

        hidden_states = inputs_embeds
        presents = () if use_cache else None
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            outputs = layer(
                hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                layer_past=layer_past,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)
            if output_attentions:
                all_attentions = all_attentions + \
                    (outputs[2 if use_cache else 1],)

        hidden_states = self.final_layer_norm(hidden_states)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_attentions]
                if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


class CustomLlamaForCausalLM(CustomLlamaPreTrainedModel):
    _tied_weights_keys = ["embed_out.weight"]
    _keys_to_ignore_on_load_unexpected = [
        r"lm.layers.\d+.attention.rotary_emb.inv_freq"
    ]

    def __init__(self, config):
        super().__init__(config)

        self.lm = CustomLlamaModel(config)
        self.embed_out = nn.Linear(
            config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.embed_out

    def set_output_embeddings(self, new_embeddings):
        self.embed_out = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
            only required when the model is used as a decoder in a Sequence to Sequence model.

            Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
            `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
            ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).

        ```"""
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.lm(
            input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        lm_logits = self.embed_out(hidden_states)

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shift_logits = lm_logits[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
            )

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithPast(
            loss=lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **model_kwargs
    ):
        input_shape = input_ids.shape

        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        # cut decoder_input_ids if past is used
        if past_key_values and past_key_values[0] is not None:
            input_ids = input_ids[:, -1:]

        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "past_key_values": past_key_values
            }
        )

        return model_inputs

    def _reorder_cache(self, past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx)
                    for past_state in layer_past[:2]
                )
                + layer_past[2:],
            )
        return reordered_past