same architecture with [timm/vit_base_patch14_dinov2.lvd142m](https://huggingface.co/timm/vit_base_patch14_dinov2.lvd142m) ```shell git clone https://github.com/DepthAnything/Depth-Anything-V2 cd Depth-Anything-V2 ``` # translate ```python ''' wget https://huggingface.co/depth-anything/Depth-Anything-V2-Small/resolve/main/depth_anything_v2_vits.pth?download=true wget https://huggingface.co/depth-anything/Depth-Anything-V2-Base/resolve/main/depth_anything_v2_vitb.pth?download=true wget https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true ''' import torch from depth_anything_v2.dpt import DepthAnythingV2 DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, } encoder = 'vitb' # or 'vits', 'vitb' model = DepthAnythingV2(**model_configs[encoder]) model.load_state_dict(torch.load(f'depth_anything_v2_{encoder}.pth?download=true', map_location='cpu')) vit = model.pretrained # total_params = 0 # for name, param in vit.named_parameters(): # print(f"Parameter: {name} - Size: {param.size()} - Total Elements: {param.numel()}") # total_params += param.numel() # print(f"Total number of parameters in ViT: {total_params}") filtered_state_dict = {k: v for k, v in vit.state_dict().items() if 'mask_token' not in k} torch.save(filtered_state_dict, "pytorch_model.bin") ``` # usage ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'vit_base_patch14_dinov2.lvd142m', pretrained=True, num_classes=0, # remove classifier nn.Linear checkpoint_path="pytorch_model.bin" ) # model2.load_state_dict(torch.load("backbone_weights.pth")) # for name, param in model.named_parameters(): # print(f"Parameter: {name} - Size: {param.size()} - Total Elements: {param.numel()}") model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1374, 1024) shaped tensor output = model.forward_head(output, pre_logits=True) print(output) ``` Copyright saved.