Model save
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
tags:
|
4 |
+
- trl
|
5 |
+
- dpo
|
6 |
+
- generated_from_trainer
|
7 |
+
base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
|
8 |
+
model-index:
|
9 |
+
- name: WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.3-DPO
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.3-DPO
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3940
|
21 |
+
- Rewards/chosen: 2.1209
|
22 |
+
- Rewards/rejected: -0.7121
|
23 |
+
- Rewards/accuracies: 0.4643
|
24 |
+
- Rewards/margins: 2.8330
|
25 |
+
- Logps/rejected: -85.8883
|
26 |
+
- Logps/chosen: -44.2478
|
27 |
+
- Logits/rejected: -1.8122
|
28 |
+
- Logits/chosen: -1.7731
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 5e-06
|
48 |
+
- train_batch_size: 2
|
49 |
+
- eval_batch_size: 2
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 2
|
52 |
+
- total_train_batch_size: 4
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.03
|
56 |
+
- training_steps: 366
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.6371 | 0.49 | 30 | 0.5865 | 0.2472 | -0.0086 | 0.4643 | 0.2558 | -83.5434 | -50.4937 | -1.7726 | -1.7380 |
|
64 |
+
| 0.5496 | 0.98 | 60 | 0.4964 | 0.5865 | -0.0274 | 0.4643 | 0.6139 | -83.6061 | -49.3627 | -1.7774 | -1.7420 |
|
65 |
+
| 0.5185 | 1.46 | 90 | 0.4402 | 1.0091 | -0.0981 | 0.4643 | 1.1072 | -83.8415 | -47.9539 | -1.7827 | -1.7461 |
|
66 |
+
| 0.4623 | 1.95 | 120 | 0.4217 | 1.2998 | -0.1810 | 0.4643 | 1.4808 | -84.1178 | -46.9850 | -1.7884 | -1.7512 |
|
67 |
+
| 0.4985 | 2.44 | 150 | 0.4069 | 1.5958 | -0.3227 | 0.4643 | 1.9185 | -84.5901 | -45.9983 | -1.7968 | -1.7591 |
|
68 |
+
| 0.5276 | 2.93 | 180 | 0.4012 | 1.7623 | -0.4253 | 0.4643 | 2.1876 | -84.9322 | -45.4432 | -1.8018 | -1.7638 |
|
69 |
+
| 0.5059 | 3.41 | 210 | 0.3993 | 1.8696 | -0.4661 | 0.4643 | 2.3356 | -85.0681 | -45.0858 | -1.8022 | -1.7637 |
|
70 |
+
| 0.4308 | 3.9 | 240 | 0.3972 | 1.9763 | -0.5593 | 0.4643 | 2.5356 | -85.3788 | -44.7300 | -1.8068 | -1.7681 |
|
71 |
+
| 0.4277 | 4.39 | 270 | 0.3954 | 2.0294 | -0.6326 | 0.4643 | 2.6620 | -85.6233 | -44.5531 | -1.8100 | -1.7711 |
|
72 |
+
| 0.4366 | 4.88 | 300 | 0.3951 | 2.0765 | -0.6602 | 0.4643 | 2.7367 | -85.7153 | -44.3961 | -1.8107 | -1.7718 |
|
73 |
+
| 0.4359 | 5.37 | 330 | 0.3941 | 2.1068 | -0.6947 | 0.4643 | 2.8015 | -85.8303 | -44.2949 | -1.8115 | -1.7724 |
|
74 |
+
| 0.4413 | 5.85 | 360 | 0.3940 | 2.1209 | -0.7121 | 0.4643 | 2.8330 | -85.8883 | -44.2478 | -1.8122 | -1.7731 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- PEFT 0.10.0
|
80 |
+
- Transformers 4.38.2
|
81 |
+
- Pytorch 2.1.0+cu118
|
82 |
+
- Datasets 2.18.0
|
83 |
+
- Tokenizers 0.15.2
|