File size: 6,033 Bytes
d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 d27ecc2 c68a8b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
language:
- en
license: other
tags:
- axolotl
- generated_from_trainer
- phi
- phi2
- einstein
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- science
- physics
- chemistry
- biology
- math
base_model: Qwen/Qwen1.5-32B
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- camel-ai/math
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- TIGER-Lab/ScienceEval
- jondurbin/airoboros-3.2
- LDJnr/Capybara
- Cot-Alpaca-GPT4-From-OpenHermes-2.5
- STEM-AI-mtl/Electrical-engineering
- knowrohit07/saraswati-stem
- sablo/oasst2_curated
- glaiveai/glaive-code-assistant
- lmsys/lmsys-chat-1m
- TIGER-Lab/MathInstruct
- bigbio/med_qa
- meta-math/MetaMathQA-40K
- openbookqa
- piqa
- metaeval/reclor
- derek-thomas/ScienceQA
- scibench
- sciq
- Open-Orca/SlimOrca
- migtissera/Synthia-v1.3
- TIGER-Lab/ScienceEval
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/VTacthtA6N97SqD23WtwB.png)
# 🔬 Einstein-v4-Qwen-1.5-32B
This model is a [QLoRA](https://arxiv.org/abs/2305.14314) fine-tuned version of [Qwen/Qwen1.5-32B](https://huggingface.co/Qwen/Qwen1.5-32B) on diverse datasets.
This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
This model's training was sponsored by [sablo.ai](https://sablo.ai).
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: Qwen/Qwen1.5-32B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: chatml
datasets:
- path: data/merged_all.json
ds_type: json
type: alpaca
conversation: chatml
- path: data/capybara_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: data/synthia-v1.3_sharegpt_12500.json
ds_type: json
type: sharegpt
conversation: chatml
- path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: data/slimorca_dedup_filtered_95k_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0 # because we won't eval, out of memory :(
output_dir: ./Einstein-v4-Qwen-1.5-32B-model
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- "embed_tokens"
- "lm_head"
wandb_project: Einstein
wandb_entity:
wandb_watch:
wandb_name: Einstein-v4-Qwen-1.5-32B-qlora-2-epoch
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v4-Qwen-1.5-32B
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 0 # because we won't eval, out of memory :(
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: zero3_bf16_cpuoffload_params.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "<|im_end|>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
```
</details><br>
# 💬 Prompt Template
You can use this prompt template while using the model:
### ChatML
```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```
This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:
```python
messages = [
{"role": "system", "content": "You are helpful AI asistant."},
{"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
```
# 🔄 Quantizationed versions
Quantizationed versions of this model is currently not available.
# 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v4-Qwen-1.5-32B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.54|
|AI2 Reasoning Challenge (25-Shot)|62.37|
|HellaSwag (10-Shot) |83.85|
|MMLU (5-Shot) |74.04|
|TruthfulQA (0-shot) |58.86|
|Winogrande (5-shot) |80.43|
|GSM8k (5-shot) |51.71|
# 🤖 Additional information about training
This model is full fine-tuned for 2 epochs.
Total number of steps was 3352.
<details><summary>Loss graph</summary>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/0Vp8iDmXi4-XbQCiwQtNP.png)
</details><br>
# 🤝 Acknowledgments
Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model.
Thanks to all the dataset authors mentioned in the datasets section.
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
Thanks to all open source AI community.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
If you would like to support me:
[☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)
|