Whispful commited on
Commit
4e9fff5
·
verified ·
1 Parent(s): 3cbc3b0

Remove README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -178
README.md DELETED
@@ -1,178 +0,0 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: NousResearch/Yarn-Mistral-7b-128k
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 00841ea4-6d58-48a4-aba0-ce8751f4c24d
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: NousResearch/Yarn-Mistral-7b-128k
23
- bf16: auto
24
- chat_template: llama3
25
- cosine_min_lr_ratio: 0.1
26
- data_processes: 16
27
- dataset_prepared_path: null
28
- datasets:
29
- - data_files:
30
- - b1454fa1fd1fe58d_train_data.json
31
- ds_type: json
32
- format: custom
33
- path: /workspace/input_data/b1454fa1fd1fe58d_train_data.json
34
- type:
35
- field_input: possible_answers
36
- field_instruction: question
37
- field_output: memory_answer
38
- format: '{instruction} {input}'
39
- no_input_format: '{instruction}'
40
- system_format: '{system}'
41
- system_prompt: ''
42
- debug: null
43
- deepspeed: null
44
- device_map: '{'''':torch.cuda.current_device()}'
45
- do_eval: true
46
- early_stopping_patience: 1
47
- eval_batch_size: 1
48
- eval_sample_packing: false
49
- eval_steps: 25
50
- evaluation_strategy: steps
51
- flash_attention: true
52
- fp16: null
53
- fsdp: null
54
- fsdp_config: null
55
- gradient_accumulation_steps: 32
56
- gradient_checkpointing: true
57
- group_by_length: true
58
- hub_model_id: Whispful/00841ea4-6d58-48a4-aba0-ce8751f4c24d
59
- hub_repo: stevemonite
60
- hub_strategy: checkpoint
61
- hub_token: null
62
- learning_rate: 0.0002
63
- load_in_4bit: false
64
- load_in_8bit: false
65
- local_rank: null
66
- logging_steps: 1
67
- lora_alpha: 64
68
- lora_dropout: 0.05
69
- lora_fan_in_fan_out: null
70
- lora_model_dir: null
71
- lora_r: 32
72
- lora_target_linear: true
73
- lora_target_modules:
74
- - q_proj
75
- - k_proj
76
- - v_proj
77
- - o_proj
78
- - gate_proj
79
- - down_proj
80
- - up_proj
81
- lr_scheduler: cosine
82
- max_grad_norm: 1.0
83
- max_memory:
84
- 0: 70GiB
85
- max_steps: 114
86
- micro_batch_size: 1
87
- mlflow_experiment_name: /tmp/b1454fa1fd1fe58d_train_data.json
88
- model_type: AutoModelForCausalLM
89
- num_epochs: 3
90
- optim_args:
91
- adam_beta1: 0.9
92
- adam_beta2: 0.95
93
- adam_epsilon: 1e-5
94
- optimizer: adamw_torch
95
- output_dir: miner_id_24
96
- pad_to_sequence_len: true
97
- resume_from_checkpoint: null
98
- s2_attention: null
99
- sample_packing: false
100
- save_steps: 50
101
- save_strategy: steps
102
- sequence_len: 2048
103
- special_tokens:
104
- pad_token: </s>
105
- strict: false
106
- tf32: false
107
- tokenizer_type: AutoTokenizer
108
- torch_compile: false
109
- train_on_inputs: false
110
- trust_remote_code: true
111
- val_set_size: 50
112
- wandb_entity: null
113
- wandb_mode: online
114
- wandb_name: 4d3d1b80-2351-40f7-99cf-7e411e41051a
115
- wandb_project: Public_TuningSN
116
- wandb_run: miner_id_24
117
- wandb_runid: 4d3d1b80-2351-40f7-99cf-7e411e41051a
118
- warmup_raio: 0.03
119
- warmup_ratio: 0.04
120
- weight_decay: 0.01
121
- xformers_attention: null
122
-
123
- ```
124
-
125
- </details><br>
126
-
127
- # 00841ea4-6d58-48a4-aba0-ce8751f4c24d
128
-
129
- This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset.
130
- It achieves the following results on the evaluation set:
131
- - Loss: 0.5278
132
-
133
- ## Model description
134
-
135
- More information needed
136
-
137
- ## Intended uses & limitations
138
-
139
- More information needed
140
-
141
- ## Training and evaluation data
142
-
143
- More information needed
144
-
145
- ## Training procedure
146
-
147
- ### Training hyperparameters
148
-
149
- The following hyperparameters were used during training:
150
- - learning_rate: 0.0002
151
- - train_batch_size: 1
152
- - eval_batch_size: 1
153
- - seed: 42
154
- - gradient_accumulation_steps: 32
155
- - total_train_batch_size: 32
156
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
157
- - lr_scheduler_type: cosine
158
- - lr_scheduler_warmup_steps: 4
159
- - training_steps: 114
160
-
161
- ### Training results
162
-
163
- | Training Loss | Epoch | Step | Validation Loss |
164
- |:-------------:|:------:|:----:|:---------------:|
165
- | 56.588 | 0.0005 | 1 | 2.1932 |
166
- | 15.8812 | 0.0131 | 25 | 0.5628 |
167
- | 12.9735 | 0.0261 | 50 | 0.5987 |
168
- | 13.6295 | 0.0392 | 75 | 0.5556 |
169
- | 13.4569 | 0.0522 | 100 | 0.5278 |
170
-
171
-
172
- ### Framework versions
173
-
174
- - PEFT 0.13.2
175
- - Transformers 4.46.0
176
- - Pytorch 2.5.0+cu124
177
- - Datasets 3.0.1
178
- - Tokenizers 0.20.1