End of training
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- audiofolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
model-index:
|
15 |
+
- name: baby-cry-classification-finetuned-babycry-v4
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Audio Classification
|
19 |
+
type: audio-classification
|
20 |
+
dataset:
|
21 |
+
name: audiofolder
|
22 |
+
type: audiofolder
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value:
|
30 |
+
accuracy: 0.8152173913043478
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.7322311897943244
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value: 0.6645793950850661
|
37 |
+
- name: Recall
|
38 |
+
type: recall
|
39 |
+
value: 0.8152173913043478
|
40 |
+
---
|
41 |
+
|
42 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
43 |
+
should probably proofread and complete it, then remove this comment. -->
|
44 |
+
|
45 |
+
# baby-cry-classification-finetuned-babycry-v4
|
46 |
+
|
47 |
+
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the audiofolder dataset.
|
48 |
+
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.7255
|
50 |
+
- Accuracy: {'accuracy': 0.8152173913043478}
|
51 |
+
- F1: 0.7322
|
52 |
+
- Precision: 0.6646
|
53 |
+
- Recall: 0.8152
|
54 |
+
|
55 |
+
## Model description
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Intended uses & limitations
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training and evaluation data
|
64 |
+
|
65 |
+
More information needed
|
66 |
+
|
67 |
+
## Training procedure
|
68 |
+
|
69 |
+
### Training hyperparameters
|
70 |
+
|
71 |
+
The following hyperparameters were used during training:
|
72 |
+
- learning_rate: 0.0001
|
73 |
+
- train_batch_size: 4
|
74 |
+
- eval_batch_size: 8
|
75 |
+
- seed: 42
|
76 |
+
- gradient_accumulation_steps: 2
|
77 |
+
- total_train_batch_size: 8
|
78 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
+
- lr_scheduler_type: linear
|
80 |
+
- lr_scheduler_warmup_ratio: 0.1
|
81 |
+
- num_epochs: 5
|
82 |
+
|
83 |
+
### Training results
|
84 |
+
|
85 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
86 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:|
|
87 |
+
| 0.6244 | 0.5435 | 25 | 0.7271 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
88 |
+
| 0.6901 | 1.0870 | 50 | 0.7196 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
89 |
+
| 0.5873 | 1.6304 | 75 | 0.7426 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
90 |
+
| 0.8029 | 2.1739 | 100 | 0.7124 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
91 |
+
| 0.5661 | 2.7174 | 125 | 0.7259 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
92 |
+
| 0.6121 | 3.2609 | 150 | 0.7431 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
93 |
+
| 0.7571 | 3.8043 | 175 | 0.7316 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
94 |
+
| 0.5284 | 4.3478 | 200 | 0.7277 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
95 |
+
| 0.7182 | 4.8913 | 225 | 0.7255 | {'accuracy': 0.8152173913043478} | 0.7322 | 0.6646 | 0.8152 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.44.2
|
101 |
+
- Pytorch 2.4.1+cu121
|
102 |
+
- Datasets 3.0.1
|
103 |
+
- Tokenizers 0.19.1
|
runs/Oct01_16-26-22_c9432f693ceb/events.out.tfevents.1727800462.c9432f693ceb.266.10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df93211eeff9c652b10c1c263dfa2522aec47b6ef37ebc2429d4f0cb77a37887
|
3 |
+
size 508
|