Wiam commited on
Commit
a45504e
1 Parent(s): f56e8ef

End of training

Browse files
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - audiofolder
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ - precision
13
+ - recall
14
+ model-index:
15
+ - name: distilhubert-finetuned-babycry-v6
16
+ results:
17
+ - task:
18
+ name: Audio Classification
19
+ type: audio-classification
20
+ dataset:
21
+ name: audiofolder
22
+ type: audiofolder
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value:
30
+ accuracy: 0.8260869565217391
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7474120082815735
34
+ - name: Precision
35
+ type: precision
36
+ value: 0.6824196597353497
37
+ - name: Recall
38
+ type: recall
39
+ value: 0.8260869565217391
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # distilhubert-finetuned-babycry-v6
46
+
47
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.6676
50
+ - Accuracy: {'accuracy': 0.8260869565217391}
51
+ - F1: 0.7474
52
+ - Precision: 0.6824
53
+ - Recall: 0.8261
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 0.001
73
+ - train_batch_size: 8
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 4
77
+ - total_train_batch_size: 32
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: cosine
80
+ - lr_scheduler_warmup_ratio: 0.03
81
+ - num_epochs: 8
82
+
83
+ ### Training results
84
+
85
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
86
+ |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:|
87
+ | 0.7816 | 2.1739 | 25 | 0.7361 | {'accuracy': 0.8260869565217391} | 0.7474 | 0.6824 | 0.8261 |
88
+ | 0.7056 | 4.3478 | 50 | 0.6957 | {'accuracy': 0.8260869565217391} | 0.7474 | 0.6824 | 0.8261 |
89
+ | 0.6654 | 6.5217 | 75 | 0.6683 | {'accuracy': 0.8260869565217391} | 0.7474 | 0.6824 | 0.8261 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.44.2
95
+ - Pytorch 2.4.1+cu121
96
+ - Datasets 3.0.1
97
+ - Tokenizers 0.19.1
runs/Oct02_16-31-49_ad7b983360ff/events.out.tfevents.1727886828.ad7b983360ff.829.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:475c9d9ca5fd2a97f269b51cc8326a2e32f68957b29ce28630e3018eea02fe4f
3
+ size 500