File size: 3,292 Bytes
74680d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilhubert-finetuned-babycry-v7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-babycry-v7
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5860
- Accuracy: {'accuracy': 0.8695652173913043}
- F1: 0.8089
- Precision: 0.7561
- Recall: 0.8696
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:|
| 1.005 | 0.5435 | 25 | 0.6526 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.7736 | 1.0870 | 50 | 0.6396 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.5618 | 1.6304 | 75 | 0.6990 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.8623 | 2.1739 | 100 | 0.5802 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.6532 | 2.7174 | 125 | 0.6205 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.8076 | 3.2609 | 150 | 0.6168 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.7581 | 3.8043 | 175 | 0.5917 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.7525 | 4.3478 | 200 | 0.5988 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.6566 | 4.8913 | 225 | 0.5997 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.6845 | 5.4348 | 250 | 0.5815 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.6812 | 5.9783 | 275 | 0.5830 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.6548 | 6.5217 | 300 | 0.5855 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.6555 | 7.0652 | 325 | 0.5859 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
| 0.7294 | 7.6087 | 350 | 0.5861 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Tokenizers 0.19.1
|