--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilhubert-finetuned-babycry-v7 results: [] datasets: - Nooon/Donate_a_cry --- # distilhubert-finetuned-babycry-v7 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5864 - Accuracy: {'accuracy': 0.8695652173913043} - F1: 0.8089 - Precision: 0.7561 - Recall: 0.8696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:| | 0.7417 | 0.5435 | 25 | 0.5925 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.7226 | 1.0870 | 50 | 0.6167 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.5606 | 1.6304 | 75 | 0.6808 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.8858 | 2.1739 | 100 | 0.5850 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.6573 | 2.7174 | 125 | 0.5968 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.7942 | 3.2609 | 150 | 0.6142 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.7497 | 3.8043 | 175 | 0.5915 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.7408 | 4.3478 | 200 | 0.5899 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.6499 | 4.8913 | 225 | 0.5989 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.6725 | 5.4348 | 250 | 0.5865 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.6797 | 5.9783 | 275 | 0.5852 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.6553 | 6.5217 | 300 | 0.5861 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.6535 | 7.0652 | 325 | 0.5863 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | | 0.7297 | 7.6087 | 350 | 0.5865 | {'accuracy': 0.8695652173913043} | 0.8089 | 0.7561 | 0.8696 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Tokenizers 0.19.1