End of training
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- audiofolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
model-index:
|
15 |
+
- name: wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v1
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Audio Classification
|
19 |
+
type: audio-classification
|
20 |
+
dataset:
|
21 |
+
name: audiofolder
|
22 |
+
type: audiofolder
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value:
|
30 |
+
accuracy: 0.8043478260869565
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.7171293871136721
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value: 0.6469754253308129
|
37 |
+
- name: Recall
|
38 |
+
type: recall
|
39 |
+
value: 0.8043478260869565
|
40 |
+
---
|
41 |
+
|
42 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
43 |
+
should probably proofread and complete it, then remove this comment. -->
|
44 |
+
|
45 |
+
# wav2vec2-lg-xlsr-en-speech-emotion-recognition-finetuned-babycry-v1
|
46 |
+
|
47 |
+
This model is a fine-tuned version of [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition) on the audiofolder dataset.
|
48 |
+
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.8444
|
50 |
+
- Accuracy: {'accuracy': 0.8043478260869565}
|
51 |
+
- F1: 0.7171
|
52 |
+
- Precision: 0.6470
|
53 |
+
- Recall: 0.8043
|
54 |
+
|
55 |
+
## Model description
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Intended uses & limitations
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training and evaluation data
|
64 |
+
|
65 |
+
More information needed
|
66 |
+
|
67 |
+
## Training procedure
|
68 |
+
|
69 |
+
### Training hyperparameters
|
70 |
+
|
71 |
+
The following hyperparameters were used during training:
|
72 |
+
- learning_rate: 0.0001
|
73 |
+
- train_batch_size: 8
|
74 |
+
- eval_batch_size: 8
|
75 |
+
- seed: 42
|
76 |
+
- gradient_accumulation_steps: 2
|
77 |
+
- total_train_batch_size: 16
|
78 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
+
- lr_scheduler_type: linear
|
80 |
+
- lr_scheduler_warmup_ratio: 0.1
|
81 |
+
- num_epochs: 3
|
82 |
+
|
83 |
+
### Training results
|
84 |
+
|
85 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
86 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------------------------:|:------:|:---------:|:------:|
|
87 |
+
| 0.6556 | 0.9615 | 25 | 0.8356 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
|
88 |
+
| 0.6427 | 1.9231 | 50 | 0.8207 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
|
89 |
+
| 0.612 | 2.8846 | 75 | 0.8447 | {'accuracy': 0.8043478260869565} | 0.7171 | 0.6470 | 0.8043 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.44.2
|
95 |
+
- Pytorch 2.4.1+cu121
|
96 |
+
- Datasets 3.0.1
|
97 |
+
- Tokenizers 0.19.1
|
runs/Oct01_15-26-14_c9432f693ceb/events.out.tfevents.1727796674.c9432f693ceb.266.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a09c108a90a89519d8aac08668147d71ba2a180312ee320e7605b7a282755af
|
3 |
+
size 500
|