--- license: mit datasets: - openai/MMMLU - argilla/FinePersonas-v0.1 - SkunkworksAI/reasoning-0.01 - fka/awesome-chatgpt-prompts metrics: - accuracy - bleu - bertscore - bleurt base_model: - meta-llama/Llama-3.2-11B-Vision-Instruct - nvidia/NVLM-D-72B - openai/whisper-large-v3-turbo new_version: meta-llama/Llama-3.1-8B-Instruct pipeline_tag: question-answering library_name: adapter-transformers from transformers import AutoModelForQuestionAnswering, Trainer, TrainingArguments model = AutoModelForQuestionAnswering.from_pretrained("your-model-name") pip install transformers datasets training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16, evaluation_strategy="epoch" ) ---eval_results = trainer.evaluate() print(eval_results)