Wim Straetemans
commited on
Commit
•
45948c9
1
Parent(s):
9c84485
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1349.14 +/- 282.57
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48dd1649171814d999efdf2cb0fb501482535cefc1ab2bb2dc670ce004980687
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f785cdb14c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f785cdb1550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f785cdb15e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f785cdb1670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f785cdb1700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f785cdb1790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f785cdb1820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f785cdb18b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f785cdb1940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f785cdb19d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f785cdb1a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f785cdb1af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f785cdad7e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674221418944716884,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMRaiT5Fjmw/QVqcPGZHhD69gY276QQrPxRToz5F3xS/+Ji3PkMBNz9omRu//RVBwFZoC78l/Bc/wUtevie5H0Blnak/lA+HvZj1vLx2nZG/vDwHv7an6b4icMc+kbNQPzTRfr+mUxs/Qaz7PhquYz+SDoE9EPxDPxRBKT4pGQ4/i4HIPaHyjT5nPfK9um2kvvhCMj+ibbm92ijyPgNEAD+Eqau/45LrO7UADD9QWZo+qOezO6E6bb/lyFk8wIdoP7moWb+u3BI9oUcFPXu2r74amIA/M/bSv0Gs+z7W64+/ruTiPzI5yL+RnTs93xTzvsWsgsBkm7W+AXadvg5rBkCNwOG/cWFbQK5ohL3Vyog/9NwFvzLNSUBI9FXAKktuvyksCMA9y4g/vEwwvyGNekABTrk/4etXQF1Tf77uxYG+GpiAP6ZTGz9lMwLA1uuPvyC3lT2IxaM/pArfvg8HiD86Mo4+PQiDv+yZHj4GsTi/hVu2PpXVZb//b3I/48Mkv+5BXL/13TU/3I1yveJFSr77HK6+/4BLPxswMD9kA8W+HF5Nv7RVwr5/d68+MHTIvhqYgD+mUxs/ZTMCwNbrj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADx6T81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4nmnvQAAAABlguq/AAAAAHKZbb0AAAAAq4r8PwAAAACAKKo9AAAAABRq9D8AAAAAWsuYPQAAAAA9GNu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyoiZtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD0vhj0AAAAAwVf4vwAAAAA4Pr88AAAAAKxv6T8AAAAA/3WSvQAAAACsE/0/AAAAAE8Koz0AAAAA3hHhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO5pprUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTR0k7AAAAAGK9478AAAAADNIfvAAAAAB7aPk/AAAAAF14Cr4AAAAAv4vtPwAAAADDa9i9AAAAABVR2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoV9w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx2mqvQAAAACuid6/AAAAAB5pkj0AAAAAXJz9PwAAAAA1OpM9AAAAAOJe3z8AAAAAIOhgvQAAAACeMNu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ3eWoIfKZGMAWyUTegDjAF0lEdApxhmPV/c33V9lChoBkdAnfuI4+8oQWgHTegDaAhHQKcYrDwYtQN1fZQoaAZHQJ2dJliBoVVoB03oA2gIR0CnHcWDHwPRdX2UKGgGR0CbksP6KtPpaAdN6ANoCEdApyAR0ZFXrHV9lChoBkdAm5ASkCV8kWgHTegDaAhHQKclo12q1gJ1fZQoaAZHQJ2/yMefZmJoB03oA2gIR0CnJf5PEbYLdX2UKGgGR0Cdy7msNlRQaAdN6ANoCEdApy0QJ7b+LnV9lChoBkdAnS0hBJI1+GgHTegDaAhHQKcvaW69TP11fZQoaAZHQJweOPjn3cpoB03oA2gIR0CnM7m0NSZSdX2UKGgGR0Ccgi/qxC6ZaAdN6ANoCEdApzP0+eOGTXV9lChoBkdAnlfvFJg9eWgHTegDaAhHQKc5I3x4IKN1fZQoaAZHQJ1tLwXqJMxoB03oA2gIR0CnO3bYbsF/dX2UKGgGR0CcuS2GZeAvaAdN6ANoCEdApz/Y0TDfnHV9lChoBkdAmsn/jOs1bmgHTegDaAhHQKdAGUcGTs91fZQoaAZHQJa3XDjzZpVoB03oA2gIR0CnRUEf9xZMdX2UKGgGR0CdMcirksBiaAdN6ANoCEdAp0eWa6STyXV9lChoBkdAme5RGYrrgWgHTegDaAhHQKdL36Q/5cl1fZQoaAZHQJz5stoSL61oB03oA2gIR0CnTBvW6K+BdX2UKGgGR0CfF/ix3V0+aAdN6ANoCEdAp1ErJMg2ZXV9lChoBkdAoAEMVQAMlWgHTegDaAhHQKdTfaSs8xN1fZQoaAZHQJ7VsR7JGONoB03oA2gIR0CnV9TBRAKOdX2UKGgGR0Cd7MOFg2IgaAdN6ANoCEdAp1gQxzq8lHV9lChoBkdAnoAatPpIMGgHTegDaAhHQKddDT5wfhd1fZQoaAZHQJ2rUZ0jkdVoB03oA2gIR0CnX2KZDzAfdX2UKGgGR0CgP5Ei+tbLaAdN6ANoCEdAp2O00YTCcnV9lChoBkdAmkZ0UfxMFmgHTegDaAhHQKdj87Qswtd1fZQoaAZHQJ8+ZZq20AtoB03oA2gIR0CnaQX4bjtHdX2UKGgGR0Cgi9djG1hLaAdN6ANoCEdAp2tXHWBjF3V9lChoBkdAmeWTcuanaWgHTegDaAhHQKdvmLiuMdd1fZQoaAZHQJ1i4ANoak1oB03oA2gIR0Cnb9R9G7SRdX2UKGgGR0Cb/k39aUzLaAdN6ANoCEdAp3TjxPO6d3V9lChoBkdAmKNI33pOe2gHTegDaAhHQKd3MtSydFx1fZQoaAZHQJoIqKsMiKRoB03oA2gIR0Cne4GucMEzdX2UKGgGR0Ccgpj1wo9caAdN6ANoCEdAp3vFFpfx+nV9lChoBkdAnP6aFIuoP2gHTegDaAhHQKeAx4gzP8h1fZQoaAZHQJd3cwJw84hoB03oA2gIR0Cngyt/nW8RdX2UKGgGR0CY8Rfu1F6SaAdN6ANoCEdAp4eZ2KVIJHV9lChoBkdAdDoKrJbMYGgHTegDaAhHQKeH2G5+Ytx1fZQoaAZHQIq4hCjUNKBoB03oA2gIR0CnjQsuvlltdX2UKGgGR0CU0Yqbz9S/aAdN6ANoCEdAp49Zqynk1nV9lChoBkdAkeuE+HJtBWgHTegDaAhHQKeTxschkiF1fZQoaAZHQJkzXXL/0d1oB03oA2gIR0CnlAVdHDrJdX2UKGgGR0CYNHDOkcjraAdN6ANoCEdAp5kOE25xznV9lChoBkdAlqimSQo1DWgHTegDaAhHQKebUnDR+jN1fZQoaAZHQIUzvZwn6VNoB03oA2gIR0Cnn5weFL39dX2UKGgGR0CZ/ubg0j1PaAdN6ANoCEdAp5/YsGxD9nV9lChoBkdAmD5q6asp5WgHTegDaAhHQKek+MFUyYZ1fZQoaAZHQJojLO0LMLZoB03oA2gIR0Cnp1sOwxFidX2UKGgGR0CbwTOfNA1OaAdN6ANoCEdAp6unUaya/nV9lChoBkdAmN55VGTcI2gHTegDaAhHQKer6QEpy6t1fZQoaAZHQIw42XC0ngJoB03oA2gIR0CnsP4RNATqdX2UKGgGR0Cb4RARkEs8aAdN6ANoCEdAp7NfIjnmrHV9lChoBkdAmG17Q9ic5WgHTegDaAhHQKe3tdgOSW91fZQoaAZHQJVxbaXa8HxoB03oA2gIR0Cnt/XBpHqedX2UKGgGR0CX8kmw7kn1aAdN6ANoCEdAp70kNWluWXV9lChoBkdAmSjYS13MZGgHTegDaAhHQKe/g0EX+ER1fZQoaAZHQJ3CD4O+ZgJoB03oA2gIR0Cnw9NsFdLQdX2UKGgGR0CQijBkI5YHaAdN6ANoCEdAp8QQmmce83V9lChoBkdAm4nzWsijcmgHTegDaAhHQKfJMhi9Zid1fZQoaAZHQJagRcmjTKFoB03oA2gIR0Cny4yCnP3SdX2UKGgGR0CUT9kTYdyUaAdN6ANoCEdAp8/e6Zpi7XV9lChoBkdAlYGczhxYJWgHTegDaAhHQKfQImLtNSJ1fZQoaAZHQJoZYYcebNNoB03oA2gIR0Cn1UcjiXIEdX2UKGgGR0CZSK60pmVaaAdN6ANoCEdAp9ei1Z1V53V9lChoBkdAmJqo/A0sOGgHTegDaAhHQKfb7+dbxEx1fZQoaAZHQJjKUj5bhWJoB03oA2gIR0Cn3CxQaaTfdX2UKGgGR0CZpZwcYIjXaAdN6ANoCEdAp+Exg9eQdXV9lChoBkdAn0jCwW3z+WgHTegDaAhHQKfjfqVQhwF1fZQoaAZHQJogp4Oc2BJoB03oA2gIR0Cn59DMvAXVdX2UKGgGR0CUjQuc+aBqaAdN6ANoCEdAp+gM2BJ7LXV9lChoBkdAmGaW7jDKo2gHTegDaAhHQKftF7MPjGV1fZQoaAZHQJtW4OpbUw1oB03oA2gIR0Cn72f9P1tgdX2UKGgGR0Ccj891loUSaAdN6ANoCEdAp/OqPwNLDnV9lChoBkdAmtZsBQvYe2gHTegDaAhHQKfz5OhTOxB1fZQoaAZHQJuNA/LTx5NoB03oA2gIR0Cn+P/CAMDwdX2UKGgGR0Cbk+F1B+nZaAdN6ANoCEdAp/tap5u63HV9lChoBkdAkBSr7j1f3WgHTegDaAhHQKf/ycCHRCx1fZQoaAZHQJtN2P7vXshoB03oA2gIR0CoAAm7SRbKdX2UKGgGR0CXIHEJBw+/aAdN6ANoCEdAqAUFhZyMk3V9lChoBkdAmAdjDKoybmgHTegDaAhHQKgHXlPJq7B1fZQoaAZHQJtKqtcOby9oB03oA2gIR0CoC6LdN34cdX2UKGgGR0CbDp7Q9ic5aAdN6ANoCEdAqAvhjUd7wHV9lChoBkdAnADSHVPN3WgHTegDaAhHQKgRB61LJ0Z1fZQoaAZHQJwd7Zbpu/FoB03oA2gIR0CoE1V2A5JcdX2UKGgGR0CQKE7dBSk1aAdN6ANoCEdAqBecupS75HV9lChoBkdAno62wV0tAmgHTegDaAhHQKgX2dK/VRV1fZQoaAZHQJh3haEBbOhoB03oA2gIR0CoHP2wNb1RdX2UKGgGR0CC+P4QjD8+aAdN6ANoCEdAqB9O/336AXV9lChoBkdAmr8mfChvi2gHTegDaAhHQKgjlc32mHh1fZQoaAZHQJhTZZGKAJ9oB03oA2gIR0CoI9Pgeii7dX2UKGgGR0CdZqnYxtYTaAdN6ANoCEdAqCjjRtxdZHV9lChoBkdAltmI4MnZ02gHTegDaAhHQKgrKNWluWN1fZQoaAZHQJ0cU/C66J9oB03oA2gIR0CoL4I7FKkEdX2UKGgGR0CadWhOxjaxaAdN6ANoCEdAqC+/siSq2nV9lChoBkdAnFFXWOIZZWgHTegDaAhHQKg03u/Dcdp1fZQoaAZHQJfWYMG5c1RoB03oA2gIR0CoNzt1hb4bdX2UKGgGR0CfDGAmiQDFaAdN6ANoCEdAqDt46EJ0GXV9lChoBkdAnwfOCwr1/WgHTegDaAhHQKg7sq0dBB11fZQoaAZHQJ5Ohx7zCk5oB03oA2gIR0CoQLMgU1yedX2UKGgGR0CcLhEAo5PuaAdN6ANoCEdAqEMRczImxHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cded227941d884529fa7c2de1e0ede4436c278e4d7adf95592a1cc08fc013bc
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e7e9a3bdc2f3c80adf6c9bf057bda08f6fea253d390f9d7e3527e36cee5f85b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f785cdb14c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f785cdb1550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f785cdb15e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f785cdb1670>", "_build": "<function ActorCriticPolicy._build at 0x7f785cdb1700>", "forward": "<function ActorCriticPolicy.forward at 0x7f785cdb1790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f785cdb1820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f785cdb18b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f785cdb1940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f785cdb19d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f785cdb1a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f785cdb1af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f785cdad7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674221418944716884, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMRaiT5Fjmw/QVqcPGZHhD69gY276QQrPxRToz5F3xS/+Ji3PkMBNz9omRu//RVBwFZoC78l/Bc/wUtevie5H0Blnak/lA+HvZj1vLx2nZG/vDwHv7an6b4icMc+kbNQPzTRfr+mUxs/Qaz7PhquYz+SDoE9EPxDPxRBKT4pGQ4/i4HIPaHyjT5nPfK9um2kvvhCMj+ibbm92ijyPgNEAD+Eqau/45LrO7UADD9QWZo+qOezO6E6bb/lyFk8wIdoP7moWb+u3BI9oUcFPXu2r74amIA/M/bSv0Gs+z7W64+/ruTiPzI5yL+RnTs93xTzvsWsgsBkm7W+AXadvg5rBkCNwOG/cWFbQK5ohL3Vyog/9NwFvzLNSUBI9FXAKktuvyksCMA9y4g/vEwwvyGNekABTrk/4etXQF1Tf77uxYG+GpiAP6ZTGz9lMwLA1uuPvyC3lT2IxaM/pArfvg8HiD86Mo4+PQiDv+yZHj4GsTi/hVu2PpXVZb//b3I/48Mkv+5BXL/13TU/3I1yveJFSr77HK6+/4BLPxswMD9kA8W+HF5Nv7RVwr5/d68+MHTIvhqYgD+mUxs/ZTMCwNbrj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADx6T81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4nmnvQAAAABlguq/AAAAAHKZbb0AAAAAq4r8PwAAAACAKKo9AAAAABRq9D8AAAAAWsuYPQAAAAA9GNu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyoiZtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD0vhj0AAAAAwVf4vwAAAAA4Pr88AAAAAKxv6T8AAAAA/3WSvQAAAACsE/0/AAAAAE8Koz0AAAAA3hHhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO5pprUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTR0k7AAAAAGK9478AAAAADNIfvAAAAAB7aPk/AAAAAF14Cr4AAAAAv4vtPwAAAADDa9i9AAAAABVR2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoV9w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx2mqvQAAAACuid6/AAAAAB5pkj0AAAAAXJz9PwAAAAA1OpM9AAAAAOJe3z8AAAAAIOhgvQAAAACeMNu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ3eWoIfKZGMAWyUTegDjAF0lEdApxhmPV/c33V9lChoBkdAnfuI4+8oQWgHTegDaAhHQKcYrDwYtQN1fZQoaAZHQJ2dJliBoVVoB03oA2gIR0CnHcWDHwPRdX2UKGgGR0CbksP6KtPpaAdN6ANoCEdApyAR0ZFXrHV9lChoBkdAm5ASkCV8kWgHTegDaAhHQKclo12q1gJ1fZQoaAZHQJ2/yMefZmJoB03oA2gIR0CnJf5PEbYLdX2UKGgGR0Cdy7msNlRQaAdN6ANoCEdApy0QJ7b+LnV9lChoBkdAnS0hBJI1+GgHTegDaAhHQKcvaW69TP11fZQoaAZHQJweOPjn3cpoB03oA2gIR0CnM7m0NSZSdX2UKGgGR0Ccgi/qxC6ZaAdN6ANoCEdApzP0+eOGTXV9lChoBkdAnlfvFJg9eWgHTegDaAhHQKc5I3x4IKN1fZQoaAZHQJ1tLwXqJMxoB03oA2gIR0CnO3bYbsF/dX2UKGgGR0CcuS2GZeAvaAdN6ANoCEdApz/Y0TDfnHV9lChoBkdAmsn/jOs1bmgHTegDaAhHQKdAGUcGTs91fZQoaAZHQJa3XDjzZpVoB03oA2gIR0CnRUEf9xZMdX2UKGgGR0CdMcirksBiaAdN6ANoCEdAp0eWa6STyXV9lChoBkdAme5RGYrrgWgHTegDaAhHQKdL36Q/5cl1fZQoaAZHQJz5stoSL61oB03oA2gIR0CnTBvW6K+BdX2UKGgGR0CfF/ix3V0+aAdN6ANoCEdAp1ErJMg2ZXV9lChoBkdAoAEMVQAMlWgHTegDaAhHQKdTfaSs8xN1fZQoaAZHQJ7VsR7JGONoB03oA2gIR0CnV9TBRAKOdX2UKGgGR0Cd7MOFg2IgaAdN6ANoCEdAp1gQxzq8lHV9lChoBkdAnoAatPpIMGgHTegDaAhHQKddDT5wfhd1fZQoaAZHQJ2rUZ0jkdVoB03oA2gIR0CnX2KZDzAfdX2UKGgGR0CgP5Ei+tbLaAdN6ANoCEdAp2O00YTCcnV9lChoBkdAmkZ0UfxMFmgHTegDaAhHQKdj87Qswtd1fZQoaAZHQJ8+ZZq20AtoB03oA2gIR0CnaQX4bjtHdX2UKGgGR0Cgi9djG1hLaAdN6ANoCEdAp2tXHWBjF3V9lChoBkdAmeWTcuanaWgHTegDaAhHQKdvmLiuMdd1fZQoaAZHQJ1i4ANoak1oB03oA2gIR0Cnb9R9G7SRdX2UKGgGR0Cb/k39aUzLaAdN6ANoCEdAp3TjxPO6d3V9lChoBkdAmKNI33pOe2gHTegDaAhHQKd3MtSydFx1fZQoaAZHQJoIqKsMiKRoB03oA2gIR0Cne4GucMEzdX2UKGgGR0Ccgpj1wo9caAdN6ANoCEdAp3vFFpfx+nV9lChoBkdAnP6aFIuoP2gHTegDaAhHQKeAx4gzP8h1fZQoaAZHQJd3cwJw84hoB03oA2gIR0Cngyt/nW8RdX2UKGgGR0CY8Rfu1F6SaAdN6ANoCEdAp4eZ2KVIJHV9lChoBkdAdDoKrJbMYGgHTegDaAhHQKeH2G5+Ytx1fZQoaAZHQIq4hCjUNKBoB03oA2gIR0CnjQsuvlltdX2UKGgGR0CU0Yqbz9S/aAdN6ANoCEdAp49Zqynk1nV9lChoBkdAkeuE+HJtBWgHTegDaAhHQKeTxschkiF1fZQoaAZHQJkzXXL/0d1oB03oA2gIR0CnlAVdHDrJdX2UKGgGR0CYNHDOkcjraAdN6ANoCEdAp5kOE25xznV9lChoBkdAlqimSQo1DWgHTegDaAhHQKebUnDR+jN1fZQoaAZHQIUzvZwn6VNoB03oA2gIR0Cnn5weFL39dX2UKGgGR0CZ/ubg0j1PaAdN6ANoCEdAp5/YsGxD9nV9lChoBkdAmD5q6asp5WgHTegDaAhHQKek+MFUyYZ1fZQoaAZHQJojLO0LMLZoB03oA2gIR0Cnp1sOwxFidX2UKGgGR0CbwTOfNA1OaAdN6ANoCEdAp6unUaya/nV9lChoBkdAmN55VGTcI2gHTegDaAhHQKer6QEpy6t1fZQoaAZHQIw42XC0ngJoB03oA2gIR0CnsP4RNATqdX2UKGgGR0Cb4RARkEs8aAdN6ANoCEdAp7NfIjnmrHV9lChoBkdAmG17Q9ic5WgHTegDaAhHQKe3tdgOSW91fZQoaAZHQJVxbaXa8HxoB03oA2gIR0Cnt/XBpHqedX2UKGgGR0CX8kmw7kn1aAdN6ANoCEdAp70kNWluWXV9lChoBkdAmSjYS13MZGgHTegDaAhHQKe/g0EX+ER1fZQoaAZHQJ3CD4O+ZgJoB03oA2gIR0Cnw9NsFdLQdX2UKGgGR0CQijBkI5YHaAdN6ANoCEdAp8QQmmce83V9lChoBkdAm4nzWsijcmgHTegDaAhHQKfJMhi9Zid1fZQoaAZHQJagRcmjTKFoB03oA2gIR0Cny4yCnP3SdX2UKGgGR0CUT9kTYdyUaAdN6ANoCEdAp8/e6Zpi7XV9lChoBkdAlYGczhxYJWgHTegDaAhHQKfQImLtNSJ1fZQoaAZHQJoZYYcebNNoB03oA2gIR0Cn1UcjiXIEdX2UKGgGR0CZSK60pmVaaAdN6ANoCEdAp9ei1Z1V53V9lChoBkdAmJqo/A0sOGgHTegDaAhHQKfb7+dbxEx1fZQoaAZHQJjKUj5bhWJoB03oA2gIR0Cn3CxQaaTfdX2UKGgGR0CZpZwcYIjXaAdN6ANoCEdAp+Exg9eQdXV9lChoBkdAn0jCwW3z+WgHTegDaAhHQKfjfqVQhwF1fZQoaAZHQJogp4Oc2BJoB03oA2gIR0Cn59DMvAXVdX2UKGgGR0CUjQuc+aBqaAdN6ANoCEdAp+gM2BJ7LXV9lChoBkdAmGaW7jDKo2gHTegDaAhHQKftF7MPjGV1fZQoaAZHQJtW4OpbUw1oB03oA2gIR0Cn72f9P1tgdX2UKGgGR0Ccj891loUSaAdN6ANoCEdAp/OqPwNLDnV9lChoBkdAmtZsBQvYe2gHTegDaAhHQKfz5OhTOxB1fZQoaAZHQJuNA/LTx5NoB03oA2gIR0Cn+P/CAMDwdX2UKGgGR0Cbk+F1B+nZaAdN6ANoCEdAp/tap5u63HV9lChoBkdAkBSr7j1f3WgHTegDaAhHQKf/ycCHRCx1fZQoaAZHQJtN2P7vXshoB03oA2gIR0CoAAm7SRbKdX2UKGgGR0CXIHEJBw+/aAdN6ANoCEdAqAUFhZyMk3V9lChoBkdAmAdjDKoybmgHTegDaAhHQKgHXlPJq7B1fZQoaAZHQJtKqtcOby9oB03oA2gIR0CoC6LdN34cdX2UKGgGR0CbDp7Q9ic5aAdN6ANoCEdAqAvhjUd7wHV9lChoBkdAnADSHVPN3WgHTegDaAhHQKgRB61LJ0Z1fZQoaAZHQJwd7Zbpu/FoB03oA2gIR0CoE1V2A5JcdX2UKGgGR0CQKE7dBSk1aAdN6ANoCEdAqBecupS75HV9lChoBkdAno62wV0tAmgHTegDaAhHQKgX2dK/VRV1fZQoaAZHQJh3haEBbOhoB03oA2gIR0CoHP2wNb1RdX2UKGgGR0CC+P4QjD8+aAdN6ANoCEdAqB9O/336AXV9lChoBkdAmr8mfChvi2gHTegDaAhHQKgjlc32mHh1fZQoaAZHQJhTZZGKAJ9oB03oA2gIR0CoI9Pgeii7dX2UKGgGR0CdZqnYxtYTaAdN6ANoCEdAqCjjRtxdZHV9lChoBkdAltmI4MnZ02gHTegDaAhHQKgrKNWluWN1fZQoaAZHQJ0cU/C66J9oB03oA2gIR0CoL4I7FKkEdX2UKGgGR0CadWhOxjaxaAdN6ANoCEdAqC+/siSq2nV9lChoBkdAnFFXWOIZZWgHTegDaAhHQKg03u/Dcdp1fZQoaAZHQJfWYMG5c1RoB03oA2gIR0CoNzt1hb4bdX2UKGgGR0CfDGAmiQDFaAdN6ANoCEdAqDt46EJ0GXV9lChoBkdAnwfOCwr1/WgHTegDaAhHQKg7sq0dBB11fZQoaAZHQJ5Ohx7zCk5oB03oA2gIR0CoQLMgU1yedX2UKGgGR0CcLhEAo5PuaAdN6ANoCEdAqEMRczImxHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebd15d52f0010f139956e22aeb1d2d5575ec0988b929797c27831ad70839aa11
|
3 |
+
size 1012121
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1349.138012863294, "std_reward": 282.5660909360522, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T14:27:14.753390"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7510605e22579eb0625469b193d59613aa66d0d5613372ff1f07816a32f2175
|
3 |
+
size 2136
|