--- license: apache-2.0 pipeline_tag: text-generation language: - ru tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 datasets: - danasone/wikipedia_ru model-index: - name: Mistral-7B-wikipedia_ru_pruned-0.1_merged results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ./datasets/ruwiki-pruned type: completion field: text dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./models/output adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 11 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Mistral-7B-wikipedia_ru_pruned-0.1_merged This model is a Q8_0 GGUF merge of [WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1](https://huggingface.co/WlappaAI/Mistral-7B-v0.1-wikipedia_ru_pruned-0.1) together with [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). It's trained on modified [danasone/wikipedia_ru](https://huggingface.co/datasets/danasone/wikipedia_ru) dataset. It achieves the following results on the evaluation set: - Loss: 1.1876 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5643 | 0.0 | 0 | | | 1.012 | 1.0 | 1100 | 1.1876 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0 - GGUF 0.9.0