File size: 3,047 Bytes
7ef8dca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
license: apache-2.0
language:
- ru
tags:
- generated_from_trainer
base_model: WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged
model-index:
- name: dracor-ru-small-lora_merged
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: ./datasets/ru-dracor
type: completion
field: text
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./models/output/dracor_ru_lora
adapter: lora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 6
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps:
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# dracor-ru-small-lora_merged
This model is a Q8_0 GGUF merge of [WlappaAI/dracor-ru-small-lora](https://huggingface.co/WlappaAI/dracor-ru-small-lora) together with [WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged](https://huggingface.co/WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged). It's trained on Russian DraCor dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1876
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7921 | 1.0 | 1056 | 1.6606 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
- GGUF 0.9.0 |