File size: 2,143 Bytes
003d1c0 9b7a317 003d1c0 9b7a317 003d1c0 53564db 003d1c0 9b7a317 003d1c0 53564db 003d1c0 9b7a317 003d1c0 53564db 003d1c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: other
base_model: google/mobilenet_v2_0.75_160
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: day-night
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9965357967667436
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# day-night
This model is a fine-tuned version of [google/mobilenet_v2_0.75_160](https://huggingface.co/google/mobilenet_v2_0.75_160) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0117
- Accuracy: 0.9965
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0899 | 0.6 | 200 | 0.0934 | 0.9711 |
| 0.026 | 1.19 | 400 | 0.0225 | 0.9942 |
| 0.0689 | 1.79 | 600 | 1.5236 | 0.7032 |
| 0.0193 | 2.38 | 800 | 0.0117 | 0.9965 |
| 0.028 | 2.98 | 1000 | 0.0186 | 0.9919 |
| 0.0159 | 3.57 | 1200 | 0.0150 | 0.9954 |
| 0.0194 | 4.17 | 1400 | 0.0369 | 0.9919 |
| 0.0081 | 4.76 | 1600 | 0.0471 | 0.9850 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|