--- base_model: - Writer/Palmyra-X-004 model-index: - name: Palmyra-X-4.3 results: [] license: other license_name: writer-open-model-license license_link: https://writer.com/legal/open-model-license/ extra_gated_prompt: >- By clicking "Agree", you agree to the [License Agreement](https://writer.com/legal/open-model-license/) and acknowledge Writer's [Privacy Policy](https://writer.com/legal/acceptable-use/). extra_gated_fields: Name: text Email: text Organization or Affiliation: text Receive email updates and promotions on Writer products, services, and research?: type: select options: - 'Yes' - 'No' I acknowledge that this model is for non-commercial use only unless I acquire a separate license from Writer: checkbox language: - en ---

Palmyra-X-4.3

### Use with transformers ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "Writer/Palmyra-X-4.3-73B" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2", trust_remote_code=True, ) messages = [ { "role": "user", "content": "Write a blog post about strangelets", }, ] input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ) gen_conf = { "max_new_tokens": 256, "eos_token_id": tokenizer.eos_token_id, "temperature": 0.7, "top_p": 0.9, } with torch.inference_mode(): output_id = model.generate(input_ids, **gen_conf) output_text = tokenizer.decode(output_id[0][input_ids.shape[1] :]) print(output_text) ```