thomas-yanxin commited on
Commit
25a7bcd
·
1 Parent(s): 0ba75ea

Upload folder using huggingface_hub

Browse files
.mdl ADDED
Binary file (39 Bytes). View file
 
.msc ADDED
Binary file (1.17 kB). View file
 
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ language:
4
+ - zh
5
+ ---
6
+ <h1 align="center">XrayQwen</h1>
7
+ <p align="center">
8
+ <a href="https://github.com/X-D-Lab/XrayQwen"><img src="https://img.shields.io/badge/GitHub-24292e" alt="github"></a>
9
+ <a href="https://huggingface.co/X-D-Lab"><img src="https://img.shields.io/badge/-HuggingFace-yellow" alt="HuggingFace"></a>
10
+ <a href="https://modelscope.cn/organization/X-D-Lab"><img src="https://img.shields.io/badge/ModelScope-blueviolet" alt="modelscope"></a>
11
+ </p>
12
+
13
+ <div align="center">
14
+
15
+ [![GitHub license](https://img.shields.io/github/license/X-D-Lab/XrayQwen
16
+ )](https://github.com/X-D-Lab/XrayQwen/blob/main/LICENSE)
17
+ [![GitHub Stars](https://img.shields.io/github/stars/X-D-Lab/XrayQwen)](https://github.com/X-D-Lab/XrayQwen/stargazers)
18
+ [![GitHub Forks](https://img.shields.io/github/forks/X-D-Lab/XrayQwen)](https://github.com/X-D-Lab/XrayQwen/fork)
19
+ [![GitHub Contributors](https://img.shields.io/github/contributors/X-D-Lab/XrayQwen)](https://github.com/X-D-Lab/XrayQwen/graphs/contributors)
20
+ </div>
21
+
22
+ ## 📕 项目介绍
23
+
24
+ 医疗场景一直是人工智能技术所关注并尝试介入和解决的真实场景. 随着ChatGPT为代表的生成式大规模语言模型(LLM, Large Language Models)等相关技术的爆发, 大量的LLM涌入医疗场景. 虽然LLM极大地推动了多模态大语言模型(MLLM, Multimodal Large Language Models)的进展, 如[MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)、[mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl)和[LLaVA](https://github.com/haotian-liu/LLaVA)等, 但是相关的MLLM技术却没有复刻LLM涌入医疗场景的繁荣景象, 尤其是中文领域, 阻碍了相关的研究进展. 我们认为究其原因不仅在于高质量中文多模态医疗数据的稀缺, 也在于缺少进入的勇气和想象力. 我们希望XrayQwen能和一些伟大的前辈项目们一道, 为推动相关领域做出一些微小的贡献.
25
+
26
+ 我们在[文心一言](https://yiyan.baidu.com/)的帮助下从[MIMIC-CXR](https://physionet.org/content/mimic-cxr-jpg/2.0.0/)和[OpenI](https://openi.nlm.nih.gov/faq#collection)两个两个数据集的自由文本放射学报告中生成中文版X射线报告配对数据用于本项目的训练数据, 并经过人工清洗和筛选.
27
+
28
+ 我们利用上述数据在强大的基座模型[Qwen-VL](https://github.com/QwenLM/Qwen-VL)上进行微调, 得到XrayQwen.
29
+
30
+ ❗**需要特别说明的是, XrayQwen仍然存在诸多不足, 目前仅作为生成式多模态大模型在医疗场景下的概念探索, 其输出内容并不代表真实的诊断结果, 具体结果请遵循医生.**
31
+
32
+ ## 🚀 开始使用
33
+
34
+ ### 1. 安装依赖
35
+
36
+ ```
37
+ pip install -r requirements.txt -U -i https://mirrors.aliyun.com/pypi/simple/
38
+ ```
39
+
40
+ ### 2. 模型列表
41
+
42
+ | 模型名称 | 合并后的权重 |
43
+ | :----: | :----: |
44
+ | XrayQwen | [ModelScope](https://modelscope.cn/models/X-D-Lab/XrayQwen/summary) / [HuggingFace]() / [OpenXLab]() |
45
+
46
+ ### 3. 模型推理
47
+
48
+ **Python Inference代码:**
49
+
50
+ ```python
51
+ from modelscope import (
52
+ snapshot_download, AutoModelForCausalLM, AutoTokenizer, GenerationConfig
53
+ )
54
+ import torch
55
+ model_id = 'X-D-Lab/XrayQwen'
56
+ revision = 'v1.0.1'
57
+
58
+ model_dir = snapshot_download(model_id, revision=revision)
59
+ torch.manual_seed(1234)
60
+
61
+ # 请注意:分词器默认行为已更改为默认关闭特殊token攻击防护。
62
+ tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
63
+ if not hasattr(tokenizer, 'model_dir'):
64
+ tokenizer.model_dir = model_dir
65
+ # 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
66
+ model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, bf16=True).eval()
67
+ # 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
68
+ # model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, fp16=True).eval()
69
+ # 使用CPU进行推理,需要约32GB内存
70
+ # model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cpu", trust_remote_code=True).eval()
71
+ # 默认使用自动模式,根据设备自动选择精度
72
+ # model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval()
73
+
74
+ # 可指定不同的生成长度、top_p等相关超参
75
+ model.generation_config = GenerationConfig.from_pretrained(model_dir, trust_remote_code=True)
76
+
77
+ # 第一轮对话 1st dialogue turn
78
+ query = tokenizer.from_list_format([
79
+ {'image': './assets/test.png'},
80
+ {'text': '这张图片的背景里有什么内容?'},
81
+ ])
82
+ response, history = model.chat(tokenizer, query=query, history=None)
83
+ print(response)
84
+ # 胸部X光片显示没有急性心肺功能异常。心脏大小正常,纵隔轮廓不明显。肺部清晰,没有局灶性固结、气胸或胸腔积液的迹象。
85
+
86
+ ```
87
+
88
+ **WebUI运行**
89
+
90
+ ```bash
91
+ python3 ./scripts/webui_demo.py
92
+ ```
93
+
94
+ 此时访问http://127.0.0.1:7860 即可.
95
+
96
+ ![](./assets/xrayqwen.png)
97
+
98
+ ## 🙇‍ ‍致谢
99
+
100
+ 在项目进行中受到以下平台及项目的大力支持, ��此表示感谢!
101
+
102
+ 1. **[OpenI启智社区](https://openi.pcl.ac.cn/)**: 提供模型训练算力;
103
+ 2. **[Qwen-VL](https://github.com/QwenLM/Qwen-VL)**: 提供非常优秀的基础模型;
104
+ 3. **[魔搭ModelScope](https://modelscope.cn/)**: 提供模型存储;
105
+ 4. **[XrayGLM](https://github.com/WangRongsheng/XrayGLM)**、**[XrayPULSE](https://github.com/openmedlab/XrayPULSE)**: 在此类工作上的探索性尝试.
106
+
107
+ 此外, 对参与本项目数据收集、标注、清洗的所有同学表示衷心的感谢!
108
+
109
+ ## 👏 欢迎
110
+
111
+ 1. 针对不同用户需求和应用场景, 我们也热情欢迎商业交流和合作, 为各位客户提供个性化的开发和升级服务!
112
+
113
+ 2. 欢迎专业的医疗人士对XrayQwen进行专业性指导和需求建议, 鼓励开源社区使用并反馈XrayQwen, 促进我们对下一代XrayQwen模型的开发.
114
+
115
+ 3. XrayQwen模型对于学术研究完全开放, 但需要遵循[Mulan - OpenI Model License V1 (Beta)](./LICENSE_MODEL)协议. 对XrayQwen模型进行商用, 请通过组织主页邮箱发送邮件进行细节咨询.
116
+
117
+ ## ⚠️ 免责声明
118
+
119
+ 本仓库开源代码遵循[Apache License 2.0](./LICENSE)协议、模型遵循[Mulan - OpenI Model License V1 (Beta)](./LICENSE_MODEL)许可认证. 目前开源的XrayQwen模型可能存在部分局限, 因此我们对此做出如下声明:
120
+
121
+ 1. **XrayQwen**目前**仅作为生成式多模态大模型在医疗场景下的概念探索**,模型本身可能存在固有的局限性, 可能产生错误的、有害的、冒犯性的或其他不良的输出. 用户在关键或高风险场景中应谨慎行事, 不要使用模型作为最终决策参考, 以免导致人身伤害、财产损失或重大损失.
122
+
123
+ 2. **XrayQwen**在任何情况下, 作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任.
124
+
125
+ 3. 使用**XrayQwen**即表示您同意这些条款和条件, 并承认您了解其使用可能带来的潜在风险. 您还同意赔偿并使作者、贡献者和版权所有者免受因您使用**XrayQwen**而产生的任何索赔、损害赔偿或责任的影响.
126
+
127
+ ## 🤝 引用
128
+
129
+ ```
130
+ @misc{XrayQwen,
131
+ author={Xin Yan, Dong Xue*},
132
+ title = {XrayQwen: A Chinese multimodal medical model for chest radiographs},
133
+ year = {2023},
134
+ publisher = {GitHub},
135
+ journal = {GitHub repository},
136
+ howpublished = {\url{https://github.com/X-D-Lab/XrayQwen}},
137
+ }
138
+ ```
139
+ #### Clone with HTTP
140
+ ```bash
141
+ git clone https://www.modelscope.cn/X-D-Lab/XrayQwen.git
142
+ ```
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./qwen/Qwen-VL-Chat",
3
+ "architectures": [
4
+ "QWenLMHeadModel"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": false,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": false,
14
+ "fp32": false,
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 22016,
18
+ "kv_channels": 128,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "max_position_embeddings": 8192,
21
+ "model_type": "qwen",
22
+ "no_bias": true,
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "onnx_safe": null,
26
+ "rotary_emb_base": 10000,
27
+ "rotary_pct": 1.0,
28
+ "scale_attn_weights": true,
29
+ "seq_length": 2048,
30
+ "tie_word_embeddings": false,
31
+ "tokenizer_type": "QWenTokenizer",
32
+ "torch_dtype": "float16",
33
+ "transformers_version": "4.30.2",
34
+ "use_cache": true,
35
+ "use_dynamic_ntk": true,
36
+ "use_flash_attn": false,
37
+ "use_logn_attn": true,
38
+ "visual": {
39
+ "heads": 16,
40
+ "image_size": 448,
41
+ "image_start_id": 151857,
42
+ "layers": 48,
43
+ "mlp_ratio": 4.9231,
44
+ "output_dim": 4096,
45
+ "patch_size": 14,
46
+ "width": 1664
47
+ },
48
+ "vocab_size": 151936
49
+ }
configuration.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "framework": "pytorch",
3
+ "task": "chat",
4
+ "pipeline": {
5
+ "type": "visual-question-answering"
6
+ },
7
+ "allow_remote": true
8
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ **kwargs,
39
+ ):
40
+ self.vocab_size = vocab_size
41
+ self.hidden_size = hidden_size
42
+ self.intermediate_size = intermediate_size
43
+ self.num_hidden_layers = num_hidden_layers
44
+ self.num_attention_heads = num_attention_heads
45
+ self.emb_dropout_prob = emb_dropout_prob
46
+ self.attn_dropout_prob = attn_dropout_prob
47
+ self.layer_norm_epsilon = layer_norm_epsilon
48
+ self.initializer_range = initializer_range
49
+ self.scale_attn_weights = scale_attn_weights
50
+ self.use_cache = use_cache
51
+ self.max_position_embeddings = max_position_embeddings
52
+ self.bf16 = bf16
53
+ self.fp16 = fp16
54
+ self.fp32 = fp32
55
+ self.kv_channels = kv_channels
56
+ self.rotary_pct = rotary_pct
57
+ self.rotary_emb_base = rotary_emb_base
58
+ self.use_dynamic_ntk = use_dynamic_ntk
59
+ self.use_logn_attn = use_logn_attn
60
+ self.use_flash_attn = use_flash_attn
61
+ self.no_bias = no_bias
62
+ super().__init__(
63
+ tie_word_embeddings=tie_word_embeddings,
64
+ **kwargs
65
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "max_window_size": 6144,
7
+ "pad_token_id": 151643,
8
+ "top_k": 0,
9
+ "top_p": 0.4,
10
+ "transformers_version": "4.30.2"
11
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import (TYPE_CHECKING, Any, Callable, Generator, List, Optional,
9
+ Tuple, Union)
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+ import torch.utils.checkpoint
14
+ from torch.cuda.amp import autocast
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import (GenerationConfig, PreTrainedTokenizer,
17
+ StoppingCriteriaList)
18
+ from transformers.generation.logits_process import LogitsProcessorList
19
+
20
+ if TYPE_CHECKING:
21
+ from transformers.generation.streamers import BaseStreamer
22
+
23
+ from transformers.generation.utils import GenerateOutput
24
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
25
+ CausalLMOutputWithPast)
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ SUPPORT_CUDA = torch.cuda.is_available()
36
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
38
+
39
+ from .configuration_qwen import QWenConfig
40
+ from .qwen_generation_utils import (HistoryType, StopWordsLogitsProcessor,
41
+ decode_tokens, get_stop_words_ids,
42
+ make_context)
43
+ from .visual import VisionTransformer
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CHECKPOINT_FOR_DOC = "qwen"
48
+ _CONFIG_FOR_DOC = "QWenConfig"
49
+
50
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
51
+
52
+ _ERROR_BAD_CHAT_FORMAT = """\
53
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
54
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
55
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
56
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
57
+ """
58
+
59
+ _SENTINEL = object()
60
+ _ERROR_STREAM_IN_CHAT = """\
61
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
62
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
63
+ """
64
+
65
+ apply_rotary_emb_func = None
66
+ rms_norm = None
67
+
68
+
69
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
70
+ def _make_causal_mask(
71
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
72
+ ):
73
+ """
74
+ Make causal mask used for bi-directional self-attention.
75
+ """
76
+ bsz, tgt_len = input_ids_shape
77
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
78
+ mask_cond = torch.arange(mask.size(-1), device=device)
79
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
80
+ mask = mask.to(dtype)
81
+
82
+ if past_key_values_length > 0:
83
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
84
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
85
+
86
+
87
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
88
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
89
+ """
90
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
91
+ """
92
+ bsz, src_len = mask.size()
93
+ tgt_len = tgt_len if tgt_len is not None else src_len
94
+
95
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
96
+
97
+ inverted_mask = 1.0 - expanded_mask
98
+
99
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
100
+
101
+
102
+ class QWenAttention(nn.Module):
103
+ def __init__(self, config):
104
+ super().__init__()
105
+
106
+ max_positions = config.max_position_embeddings
107
+ self.register_buffer(
108
+ "bias",
109
+ torch.tril(
110
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
111
+ ).view(1, 1, max_positions, max_positions),
112
+ persistent=False,
113
+ )
114
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
115
+ self.seq_length = config.seq_length
116
+
117
+ self.hidden_size = config.hidden_size
118
+ self.split_size = config.hidden_size
119
+ self.num_heads = config.num_attention_heads
120
+ self.head_dim = self.hidden_size // self.num_heads
121
+
122
+ self.scale_attn_weights = True
123
+
124
+ self.projection_size = config.kv_channels * config.num_attention_heads
125
+
126
+ assert self.projection_size % config.num_attention_heads == 0
127
+ self.hidden_size_per_attention_head = (
128
+ self.projection_size // config.num_attention_heads
129
+ )
130
+
131
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
132
+
133
+ self.c_proj = nn.Linear(
134
+ config.hidden_size, self.projection_size, bias=not config.no_bias
135
+ )
136
+
137
+ self.is_fp32 = not (config.bf16 or config.fp16)
138
+ self.bf16 = config.bf16
139
+
140
+ if config.rotary_pct == 1.0:
141
+ self.rotary_ndims = None
142
+ else:
143
+ assert config.rotary_pct < 1
144
+ self.rotary_ndims = int(
145
+ self.hidden_size_per_attention_head * config.rotary_pct
146
+ )
147
+ dim = (
148
+ self.rotary_ndims
149
+ if self.rotary_ndims is not None
150
+ else self.hidden_size_per_attention_head
151
+ )
152
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
153
+
154
+ self.use_dynamic_ntk = config.use_dynamic_ntk
155
+ self.use_logn_attn = config.use_logn_attn
156
+
157
+ logn_list = [
158
+ math.log(i, self.seq_length) if i > self.seq_length else 1
159
+ for i in range(1, 32768)
160
+ ]
161
+ self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
162
+ self._ntk_cached = 1.0
163
+
164
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
165
+
166
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
167
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
168
+
169
+ if self.scale_attn_weights:
170
+ attn_weights = attn_weights / torch.full(
171
+ [],
172
+ value.size(-1) ** 0.5,
173
+ dtype=attn_weights.dtype,
174
+ device=attn_weights.device,
175
+ )
176
+
177
+ query_length, key_length = query.size(-2), key.size(-2)
178
+ # causal_mask = self.bias[
179
+ # :, :, key_length - query_length : key_length, :key_length
180
+ # ]
181
+ # mask_value = torch.finfo(attn_weights.dtype).min
182
+ # mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
183
+ # attn_weights.device
184
+ # )
185
+ # attn_weights = torch.where(
186
+ # causal_mask, attn_weights.to(attn_weights.dtype), mask_value
187
+ # )
188
+ attn_weights = attn_weights + attention_mask
189
+
190
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
191
+
192
+ attn_weights = attn_weights.type(value.dtype)
193
+ attn_weights = self.attn_dropout(attn_weights)
194
+
195
+ if head_mask is not None:
196
+ attn_weights = attn_weights * head_mask
197
+
198
+ attn_output = torch.matmul(attn_weights, value)
199
+ attn_output = attn_output.transpose(1, 2)
200
+
201
+ return attn_output, attn_weights
202
+
203
+ def _upcast_and_reordered_attn(
204
+ self, query, key, value, attention_mask=None, head_mask=None
205
+ ):
206
+ bsz, num_heads, q_seq_len, dk = query.size()
207
+ _, _, k_seq_len, _ = key.size()
208
+
209
+ attn_weights = torch.empty(
210
+ bsz * num_heads,
211
+ q_seq_len,
212
+ k_seq_len,
213
+ dtype=torch.float32,
214
+ device=query.device,
215
+ )
216
+
217
+ scale_factor = 1.0
218
+ if self.scale_attn_weights:
219
+ scale_factor /= float(value.size(-1)) ** 0.5
220
+
221
+ with autocast(enabled=False):
222
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
223
+ -1, dk, k_seq_len
224
+ )
225
+ attn_weights = torch.baddbmm(
226
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
227
+ )
228
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
229
+
230
+ query_length, key_length = query.size(-2), key.size(-2)
231
+ causal_mask = self.bias[
232
+ :, :, key_length - query_length : key_length, :key_length
233
+ ]
234
+ mask_value = torch.finfo(attn_weights.dtype).min
235
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
236
+ attn_weights.device
237
+ )
238
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
239
+
240
+ if attention_mask is not None:
241
+ attn_weights = attn_weights + attention_mask
242
+
243
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
244
+
245
+ if attn_weights.dtype != torch.float32:
246
+ raise RuntimeError(
247
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
248
+ )
249
+ attn_weights = attn_weights.type(value.dtype)
250
+ attn_weights = self.attn_dropout(attn_weights)
251
+
252
+ if head_mask is not None:
253
+ attn_weights = attn_weights * head_mask
254
+
255
+ attn_output = torch.matmul(attn_weights, value)
256
+
257
+ return attn_output, attn_weights
258
+
259
+ def _split_heads(self, tensor, num_heads, attn_head_size):
260
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
261
+ tensor = tensor.view(new_shape)
262
+ return tensor
263
+
264
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
265
+ tensor = tensor.contiguous()
266
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
267
+ return tensor.view(new_shape)
268
+
269
+ def forward(
270
+ self,
271
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
272
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
273
+ attention_mask: Optional[torch.FloatTensor] = None,
274
+ head_mask: Optional[torch.FloatTensor] = None,
275
+ encoder_hidden_states: Optional[torch.Tensor] = None,
276
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
277
+ output_attentions: Optional[bool] = False,
278
+ use_cache: Optional[bool] = False,
279
+ ):
280
+
281
+ mixed_x_layer = self.c_attn(hidden_states)
282
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
283
+
284
+ query = self._split_heads(query, self.num_heads, self.head_dim)
285
+ key = self._split_heads(key, self.num_heads, self.head_dim)
286
+ value = self._split_heads(value, self.num_heads, self.head_dim)
287
+
288
+ kv_seq_len = hidden_states.size()[1]
289
+ if layer_past:
290
+ # layer past[0] shape: bs * seq_len * head_num * dim
291
+ kv_seq_len += layer_past[0].shape[1]
292
+ if (
293
+ self.use_dynamic_ntk
294
+ and kv_seq_len == hidden_states.size()[1]
295
+ and not self.training
296
+ ):
297
+ context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
298
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
299
+ ntk_alpha = max(ntk_alpha, 1)
300
+ self._ntk_cached = ntk_alpha
301
+ else:
302
+ ntk_alpha = self._ntk_cached
303
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
304
+ hidden_states.device
305
+ )
306
+
307
+ if rotary_pos_emb is not None:
308
+ if isinstance(rotary_pos_emb, tuple):
309
+ rotary_pos_emb = rotary_pos_emb
310
+ else:
311
+ rotary_pos_emb = (rotary_pos_emb,) * 2
312
+
313
+ if rotary_pos_emb is not None:
314
+ q_pos_emb, k_pos_emb = rotary_pos_emb
315
+ # Slice the pos emb for current inference
316
+ cur_len = query.shape[1]
317
+ q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
318
+ k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
319
+ query = apply_rotary_pos_emb(query, q_pos_emb)
320
+ key = apply_rotary_pos_emb(key, k_pos_emb)
321
+
322
+ if layer_past is not None:
323
+ past_key, past_value = layer_past[0], layer_past[1]
324
+ key = torch.cat((past_key, key), dim=1)
325
+ value = torch.cat((past_value, value), dim=1)
326
+
327
+ if use_cache:
328
+ present = (key, value)
329
+ else:
330
+ present = None
331
+
332
+ if self.use_logn_attn and not self.training:
333
+ if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
334
+ self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
335
+ seq_start = key.size(1) - query.size(1)
336
+ seq_end = key.size(1)
337
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
338
+ query = query * logn_tensor.expand_as(query)
339
+
340
+ query = query.permute(0, 2, 1, 3)
341
+ key = key.permute(0, 2, 1, 3)
342
+ value = value.permute(0, 2, 1, 3)
343
+ attn_output, attn_weight = self._attn(
344
+ query, key, value, attention_mask, head_mask
345
+ )
346
+ context_layer = self._merge_heads(
347
+ attn_output, self.num_heads, self.head_dim
348
+ )
349
+
350
+ attn_output = self.c_proj(context_layer)
351
+ outputs = (attn_output, present)
352
+ if output_attentions:
353
+ outputs += (attn_weight,)
354
+
355
+ return outputs
356
+
357
+
358
+ class QWenMLP(nn.Module):
359
+ def __init__(self, config):
360
+ super().__init__()
361
+ self.w1 = nn.Linear(
362
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
363
+ )
364
+ self.w2 = nn.Linear(
365
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
366
+ )
367
+ ff_dim_in = config.intermediate_size // 2
368
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
369
+
370
+ def forward(self, hidden_states):
371
+ a1 = self.w1(hidden_states)
372
+ a2 = self.w2(hidden_states)
373
+ intermediate_parallel = a1 * F.silu(a2)
374
+ output = self.c_proj(intermediate_parallel)
375
+ return output
376
+
377
+
378
+ class QWenBlock(nn.Module):
379
+ def __init__(self, config):
380
+ super().__init__()
381
+ hidden_size = config.hidden_size
382
+ self.bf16 = config.bf16
383
+
384
+ self.ln_1 = RMSNorm(
385
+ hidden_size,
386
+ eps=config.layer_norm_epsilon,
387
+ )
388
+ self.attn = QWenAttention(config)
389
+ self.ln_2 = RMSNorm(
390
+ hidden_size,
391
+ eps=config.layer_norm_epsilon,
392
+ )
393
+
394
+ self.mlp = QWenMLP(config)
395
+
396
+ def forward(
397
+ self,
398
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
399
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
400
+ attention_mask: Optional[torch.FloatTensor] = None,
401
+ head_mask: Optional[torch.FloatTensor] = None,
402
+ encoder_hidden_states: Optional[torch.Tensor] = None,
403
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
404
+ use_cache: Optional[bool] = False,
405
+ output_attentions: Optional[bool] = False,
406
+ ):
407
+ layernorm_output = self.ln_1(hidden_states)
408
+
409
+ attn_outputs = self.attn(
410
+ layernorm_output,
411
+ layer_past=layer_past,
412
+ attention_mask=attention_mask,
413
+ head_mask=head_mask,
414
+ use_cache=use_cache,
415
+ output_attentions=output_attentions,
416
+ )
417
+ attn_output = attn_outputs[0]
418
+
419
+ outputs = attn_outputs[1:]
420
+
421
+ residual = hidden_states
422
+ layernorm_input = attn_output + residual
423
+
424
+ layernorm_output = self.ln_2(layernorm_input)
425
+
426
+ residual = layernorm_input
427
+ mlp_output = self.mlp(layernorm_output)
428
+ hidden_states = residual + mlp_output
429
+
430
+ if use_cache:
431
+ outputs = (hidden_states,) + outputs
432
+ else:
433
+ outputs = (hidden_states,) + outputs[1:]
434
+
435
+ return outputs
436
+
437
+
438
+ class QWenPreTrainedModel(PreTrainedModel):
439
+ config_class = QWenConfig
440
+ base_model_prefix = "transformer"
441
+ is_parallelizable = False
442
+ supports_gradient_checkpointing = True
443
+ _no_split_modules = ["QWenBlock"]
444
+
445
+ def __init__(self, *inputs, **kwargs):
446
+ super().__init__(*inputs, **kwargs)
447
+
448
+ def _init_weights(self, module):
449
+ """Initialize the weights."""
450
+ if isinstance(module, nn.Linear):
451
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
452
+ if module.bias is not None:
453
+ module.bias.data.zero_()
454
+ elif isinstance(module, nn.Embedding):
455
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
456
+ if module.padding_idx is not None:
457
+ module.weight.data[module.padding_idx].zero_()
458
+ elif isinstance(module, RMSNorm):
459
+ module.weight.data.fill_(1.0)
460
+
461
+ for name, p in module.named_parameters():
462
+ if name == "c_proj.weight":
463
+ p.data.normal_(
464
+ mean=0.0,
465
+ std=(
466
+ self.config.initializer_range
467
+ / math.sqrt(2 * self.config.num_hidden_layers)
468
+ ),
469
+ )
470
+
471
+ def _set_gradient_checkpointing(self, module, value=False):
472
+ if isinstance(module, QWenModel):
473
+ module.gradient_checkpointing = value
474
+
475
+
476
+ class QWenModel(QWenPreTrainedModel):
477
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
478
+
479
+ def __init__(self, config):
480
+ super().__init__(config)
481
+ self.vocab_size = config.vocab_size
482
+ self.num_hidden_layers = config.num_hidden_layers
483
+ self.embed_dim = config.hidden_size
484
+
485
+ self.gradient_checkpointing = False
486
+
487
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
488
+
489
+ self.drop = nn.Dropout(config.emb_dropout_prob)
490
+ self.h = nn.ModuleList(
491
+ [
492
+ QWenBlock(
493
+ config,
494
+ )
495
+ for i in range(config.num_hidden_layers)
496
+ ]
497
+ )
498
+ self.ln_f = RMSNorm(
499
+ self.embed_dim,
500
+ eps=config.layer_norm_epsilon,
501
+ )
502
+
503
+ self.visual = VisionTransformer(**config.visual)
504
+
505
+ self.post_init()
506
+
507
+ def get_input_embeddings(self):
508
+ return self.wte
509
+
510
+ def set_input_embeddings(self, new_embeddings):
511
+ self.wte = new_embeddings
512
+
513
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
514
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
515
+ # create causal mask
516
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
517
+ combined_attention_mask = None
518
+ if input_shape[-1] > 1:
519
+ combined_attention_mask = _make_causal_mask(
520
+ input_shape,
521
+ inputs_embeds.dtype,
522
+ device=inputs_embeds.device,
523
+ past_key_values_length=past_key_values_length,
524
+ )
525
+
526
+ if attention_mask is not None:
527
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
528
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
529
+ inputs_embeds.device
530
+ )
531
+ combined_attention_mask = (
532
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
533
+ )
534
+
535
+ return combined_attention_mask
536
+
537
+
538
+ def forward(
539
+ self,
540
+ input_ids: Optional[torch.LongTensor] = None,
541
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
542
+ attention_mask: Optional[torch.FloatTensor] = None,
543
+ token_type_ids: Optional[torch.LongTensor] = None,
544
+ position_ids: Optional[torch.LongTensor] = None,
545
+ head_mask: Optional[torch.FloatTensor] = None,
546
+ inputs_embeds: Optional[torch.FloatTensor] = None,
547
+ encoder_hidden_states: Optional[torch.Tensor] = None,
548
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
549
+ use_cache: Optional[bool] = None,
550
+ output_attentions: Optional[bool] = None,
551
+ output_hidden_states: Optional[bool] = None,
552
+ return_dict: Optional[bool] = None,
553
+ ):
554
+ if past_key_values is None and torch.any(input_ids == self.config.visual['image_start_id']):
555
+ bos_pos = torch.where(input_ids == self.config.visual['image_start_id'])
556
+ eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1)
557
+ assert (bos_pos[0] == eos_pos[0]).all()
558
+ img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
559
+ images = []
560
+ for i, a, b in img_pos:
561
+ image = input_ids[i][a + 1 : b - 1].tolist()
562
+ image = image[ : image.index(self.config.visual['image_start_id'] + 2)]
563
+ images.append(bytes(image).decode('utf-8'))
564
+
565
+ images = self.visual.encode(images)
566
+ assert images.shape[0] == len(images)
567
+ else:
568
+ images = None
569
+
570
+ output_attentions = (
571
+ output_attentions
572
+ if output_attentions is not None
573
+ else self.config.output_attentions
574
+ )
575
+ output_hidden_states = (
576
+ output_hidden_states
577
+ if output_hidden_states is not None
578
+ else self.config.output_hidden_states
579
+ )
580
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
581
+ return_dict = (
582
+ return_dict if return_dict is not None else self.config.use_return_dict
583
+ )
584
+
585
+ if input_ids is not None and inputs_embeds is not None:
586
+ raise ValueError(
587
+ "You cannot specify both input_ids and inputs_embeds at the same time"
588
+ )
589
+ elif input_ids is not None:
590
+ input_shape = input_ids.size()
591
+ input_ids = input_ids.view(-1, input_shape[-1])
592
+ batch_size = input_ids.shape[0]
593
+ elif inputs_embeds is not None:
594
+ input_shape = inputs_embeds.size()[:-1]
595
+ batch_size = inputs_embeds.shape[0]
596
+ else:
597
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
598
+
599
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
600
+
601
+ if token_type_ids is not None:
602
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
603
+ if position_ids is not None:
604
+ position_ids = position_ids.view(-1, input_shape[-1])
605
+
606
+ if past_key_values is None:
607
+ past_length = 0
608
+ past_key_values = tuple([None] * len(self.h))
609
+ else:
610
+ past_length = past_key_values[0][0].size(-2)
611
+
612
+ if position_ids is None:
613
+ position_ids = torch.arange(
614
+ past_length,
615
+ input_shape[-1] + past_length,
616
+ dtype=torch.long,
617
+ device=device,
618
+ )
619
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
620
+
621
+ encoder_attention_mask = None
622
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
623
+
624
+ if inputs_embeds is None:
625
+ inputs_embeds = self.wte(input_ids)
626
+
627
+ if batch_size <= 0:
628
+ raise ValueError("batch_size has to be defined and > 0")
629
+ attention_mask = self._prepare_decoder_attention_mask(
630
+ attention_mask, input_shape, inputs_embeds, past_length
631
+ )
632
+ # avoid leaf var error(train)
633
+ hidden_states = inputs_embeds.clone()
634
+
635
+ hidden_states = self.drop(hidden_states)
636
+ if images is not None:
637
+ for idx, (i, a, b) in enumerate(img_pos):
638
+ hidden_states[i][a + 1 : b] = images[idx]
639
+ output_shape = input_shape + (hidden_states.size(-1),)
640
+
641
+ if self.gradient_checkpointing and self.training:
642
+ if use_cache:
643
+ logger.warning_once(
644
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
645
+ )
646
+ use_cache = False
647
+
648
+ presents = () if use_cache else None
649
+ all_self_attentions = () if output_attentions else None
650
+ all_hidden_states = () if output_hidden_states else None
651
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
652
+
653
+ if output_hidden_states:
654
+ all_hidden_states = all_hidden_states + (hidden_states,)
655
+
656
+ if self.gradient_checkpointing and self.training:
657
+
658
+ def create_custom_forward(module):
659
+ def custom_forward(*inputs):
660
+ # None for past_key_value
661
+ return module(*inputs, use_cache, output_attentions)
662
+
663
+ return custom_forward
664
+
665
+ outputs = torch.utils.checkpoint.checkpoint(
666
+ create_custom_forward(block),
667
+ hidden_states,
668
+ None,
669
+ attention_mask,
670
+ head_mask[i],
671
+ encoder_hidden_states,
672
+ encoder_attention_mask,
673
+ )
674
+ else:
675
+ outputs = block(
676
+ hidden_states,
677
+ layer_past=layer_past,
678
+ attention_mask=attention_mask,
679
+ head_mask=head_mask[i],
680
+ encoder_hidden_states=encoder_hidden_states,
681
+ encoder_attention_mask=encoder_attention_mask,
682
+ use_cache=use_cache,
683
+ output_attentions=output_attentions,
684
+ )
685
+
686
+ hidden_states = outputs[0]
687
+ if use_cache is True:
688
+ presents = presents + (outputs[2 if output_attentions else 1],)
689
+
690
+ if output_attentions:
691
+ all_self_attentions = all_self_attentions + (outputs[1],)
692
+
693
+ hidden_states = self.ln_f(hidden_states)
694
+ hidden_states = hidden_states.view(output_shape)
695
+ # Add last hidden state
696
+ if output_hidden_states:
697
+ all_hidden_states = all_hidden_states + (hidden_states,)
698
+
699
+ if not return_dict:
700
+ return tuple(
701
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
702
+ )
703
+
704
+ return BaseModelOutputWithPast(
705
+ last_hidden_state=hidden_states,
706
+ past_key_values=presents,
707
+ hidden_states=all_hidden_states,
708
+ attentions=all_self_attentions,
709
+ )
710
+
711
+
712
+ class QWenLMHeadModel(QWenPreTrainedModel):
713
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
714
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
715
+
716
+ def __init__(self, config):
717
+ super().__init__(config)
718
+ assert (
719
+ config.bf16 + config.fp16 + config.fp32 <= 1
720
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
721
+
722
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
723
+
724
+ if autoset_precision:
725
+ if SUPPORT_BF16:
726
+ logger.warn(
727
+ "The model is automatically converting to bf16 for faster inference. "
728
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
729
+ )
730
+ config.bf16 = True
731
+ elif SUPPORT_FP16:
732
+ logger.warn(
733
+ "The model is automatically converting to fp16 for faster inference. "
734
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
735
+ )
736
+ config.fp16 = True
737
+ else:
738
+ config.fp32 = True
739
+
740
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
741
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
742
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
743
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
744
+ if config.fp32:
745
+ if SUPPORT_BF16:
746
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
747
+ elif SUPPORT_FP16:
748
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
749
+
750
+ self.transformer = QWenModel(config)
751
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
752
+
753
+ if config.bf16:
754
+ self.transformer.bfloat16()
755
+ self.lm_head.bfloat16()
756
+ if config.fp16:
757
+ self.transformer.half()
758
+ self.lm_head.half()
759
+ self.post_init()
760
+
761
+ def get_output_embeddings(self):
762
+ return self.lm_head
763
+
764
+ def set_output_embeddings(self, new_embeddings):
765
+ self.lm_head = new_embeddings
766
+
767
+ def prepare_inputs_for_generation(
768
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
769
+ ):
770
+ token_type_ids = kwargs.get("token_type_ids", None)
771
+ if past_key_values:
772
+ input_ids = input_ids[:, -1].unsqueeze(-1)
773
+ if token_type_ids is not None:
774
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
775
+
776
+ attention_mask = kwargs.get("attention_mask", None)
777
+ position_ids = kwargs.get("position_ids", None)
778
+
779
+ if attention_mask is not None and position_ids is None:
780
+ position_ids = attention_mask.long().cumsum(-1) - 1
781
+ position_ids.masked_fill_(attention_mask == 0, 1)
782
+ if past_key_values:
783
+ position_ids = position_ids[:, -1].unsqueeze(-1)
784
+ else:
785
+ position_ids = None
786
+
787
+ if inputs_embeds is not None and past_key_values is None:
788
+ model_inputs = {"inputs_embeds": inputs_embeds}
789
+ else:
790
+ model_inputs = {"input_ids": input_ids}
791
+
792
+ model_inputs.update(
793
+ {
794
+ "past_key_values": past_key_values,
795
+ "use_cache": kwargs.get("use_cache"),
796
+ "position_ids": position_ids,
797
+ "attention_mask": attention_mask,
798
+ "token_type_ids": token_type_ids,
799
+ }
800
+ )
801
+ return model_inputs
802
+
803
+ def forward(
804
+ self,
805
+ input_ids: Optional[torch.LongTensor] = None,
806
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
807
+ attention_mask: Optional[torch.FloatTensor] = None,
808
+ token_type_ids: Optional[torch.LongTensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ head_mask: Optional[torch.FloatTensor] = None,
811
+ inputs_embeds: Optional[torch.FloatTensor] = None,
812
+ encoder_hidden_states: Optional[torch.Tensor] = None,
813
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
814
+ labels: Optional[torch.LongTensor] = None,
815
+ use_cache: Optional[bool] = None,
816
+ output_attentions: Optional[bool] = None,
817
+ output_hidden_states: Optional[bool] = None,
818
+ return_dict: Optional[bool] = None,
819
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
820
+
821
+ return_dict = (
822
+ return_dict if return_dict is not None else self.config.use_return_dict
823
+ )
824
+
825
+ transformer_outputs = self.transformer(
826
+ input_ids,
827
+ past_key_values=past_key_values,
828
+ attention_mask=attention_mask,
829
+ token_type_ids=token_type_ids,
830
+ position_ids=position_ids,
831
+ head_mask=head_mask,
832
+ inputs_embeds=inputs_embeds,
833
+ encoder_hidden_states=encoder_hidden_states,
834
+ encoder_attention_mask=encoder_attention_mask,
835
+ use_cache=use_cache,
836
+ output_attentions=output_attentions,
837
+ output_hidden_states=output_hidden_states,
838
+ return_dict=return_dict,
839
+ )
840
+ hidden_states = transformer_outputs[0]
841
+
842
+ lm_logits = self.lm_head(hidden_states)
843
+
844
+ loss = None
845
+ if labels is not None:
846
+ labels = labels.to(lm_logits.device)
847
+ shift_logits = lm_logits[..., :-1, :].contiguous()
848
+ shift_labels = labels[..., 1:].contiguous()
849
+ loss_fct = CrossEntropyLoss()
850
+ loss = loss_fct(
851
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
852
+ )
853
+
854
+ if not return_dict:
855
+ output = (lm_logits,) + transformer_outputs[1:]
856
+ return ((loss,) + output) if loss is not None else output
857
+
858
+ return CausalLMOutputWithPast(
859
+ loss=loss,
860
+ logits=lm_logits,
861
+ past_key_values=transformer_outputs.past_key_values,
862
+ hidden_states=transformer_outputs.hidden_states,
863
+ attentions=transformer_outputs.attentions,
864
+ )
865
+
866
+ @staticmethod
867
+ def _reorder_cache(
868
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
869
+ ) -> Tuple[Tuple[torch.Tensor]]:
870
+
871
+ return tuple(
872
+ tuple(
873
+ past_state.index_select(0, beam_idx.to(past_state.device))
874
+ for past_state in layer_past
875
+ )
876
+ for layer_past in past_key_values
877
+ )
878
+
879
+ def chat(
880
+ self,
881
+ tokenizer: PreTrainedTokenizer,
882
+ query: str,
883
+ history: Optional[HistoryType],
884
+ system: str = "You are a helpful assistant.",
885
+ append_history: bool = True,
886
+ stream: Optional[bool] = _SENTINEL,
887
+ stop_words_ids: Optional[List[List[int]]] = None,
888
+ **kwargs,
889
+ ) -> Tuple[str, HistoryType]:
890
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
891
+ assert self.generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
892
+ if history is None:
893
+ history = []
894
+ if stop_words_ids is None:
895
+ stop_words_ids = []
896
+
897
+ max_window_size = kwargs.get('max_window_size', None)
898
+ if max_window_size is None:
899
+ max_window_size = self.generation_config.max_window_size
900
+ raw_text, context_tokens = make_context(
901
+ tokenizer,
902
+ query,
903
+ history=history,
904
+ system=system,
905
+ max_window_size=max_window_size,
906
+ chat_format=self.generation_config.chat_format,
907
+ )
908
+
909
+ stop_words_ids.extend(get_stop_words_ids(
910
+ self.generation_config.chat_format, tokenizer
911
+ ))
912
+ input_ids = torch.tensor([context_tokens]).to(self.device)
913
+ outputs = self.generate(
914
+ input_ids,
915
+ stop_words_ids = stop_words_ids,
916
+ return_dict_in_generate = False,
917
+ **kwargs,
918
+ )
919
+
920
+ response = decode_tokens(
921
+ outputs[0],
922
+ tokenizer,
923
+ raw_text_len=len(raw_text),
924
+ context_length=len(context_tokens),
925
+ chat_format=self.generation_config.chat_format,
926
+ verbose=False,
927
+ errors='replace'
928
+ )
929
+
930
+ if append_history:
931
+ history.append((query, response))
932
+
933
+ return response, history
934
+
935
+ def chat_stream(
936
+ self,
937
+ tokenizer: PreTrainedTokenizer,
938
+ query: str,
939
+ history: Optional[HistoryType],
940
+ system: str = "You are a helpful assistant.",
941
+ stop_words_ids: Optional[List[List[int]]] = None,
942
+ logits_processor: Optional[LogitsProcessorList] = None,
943
+ **kwargs,
944
+ ) -> Generator[str, Any, None]:
945
+ assert self.generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
946
+ if history is None:
947
+ history = []
948
+ if stop_words_ids is None:
949
+ stop_words_ids = []
950
+
951
+ max_window_size = kwargs.get('max_window_size', None)
952
+ if max_window_size is None:
953
+ max_window_size = self.generation_config.max_window_size
954
+ raw_text, context_tokens = make_context(
955
+ tokenizer,
956
+ query,
957
+ history=history,
958
+ system=system,
959
+ max_window_size=max_window_size,
960
+ chat_format=self.generation_config.chat_format,
961
+ )
962
+
963
+ stop_words_ids.extend(get_stop_words_ids(
964
+ self.generation_config.chat_format, tokenizer
965
+ ))
966
+ if stop_words_ids is not None:
967
+ stop_words_logits_processor = StopWordsLogitsProcessor(
968
+ stop_words_ids=stop_words_ids,
969
+ eos_token_id=self.generation_config.eos_token_id,
970
+ )
971
+ if logits_processor is None:
972
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
973
+ else:
974
+ logits_processor.append(stop_words_logits_processor)
975
+ input_ids = torch.tensor([context_tokens]).to(self.device)
976
+
977
+ from transformers_stream_generator.main import (NewGenerationMixin,
978
+ StreamGenerationConfig)
979
+ self.__class__.generate_stream = NewGenerationMixin.generate
980
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
981
+ stream_config = StreamGenerationConfig(**self.generation_config.to_dict(), do_stream=True)
982
+ def stream_generator():
983
+ outputs = []
984
+ for token in self.generate_stream(
985
+ input_ids,
986
+ return_dict_in_generate=False,
987
+ generation_config=stream_config,
988
+ logits_processor=logits_processor,
989
+ seed=-1,
990
+ **kwargs):
991
+ outputs.append(token.item())
992
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
993
+
994
+ return stream_generator()
995
+
996
+ def generate(
997
+ self,
998
+ inputs: Optional[torch.Tensor] = None,
999
+ generation_config: Optional[GenerationConfig] = None,
1000
+ logits_processor: Optional[LogitsProcessorList] = None,
1001
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1002
+ prefix_allowed_tokens_fn: Optional[
1003
+ Callable[[int, torch.Tensor], List[int]]
1004
+ ] = None,
1005
+ synced_gpus: Optional[bool] = None,
1006
+ assistant_model: Optional["PreTrainedModel"] = None,
1007
+ streamer: Optional["BaseStreamer"] = None,
1008
+ **kwargs,
1009
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1010
+ # Process stop_words_ids.
1011
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1012
+ if stop_words_ids is None and generation_config is not None:
1013
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1014
+ if stop_words_ids is None:
1015
+ stop_words_ids = getattr(self.generation_config, "stop_words_ids", None)
1016
+
1017
+ if stop_words_ids is not None:
1018
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1019
+ stop_words_ids=stop_words_ids,
1020
+ eos_token_id=self.generation_config.eos_token_id,
1021
+ )
1022
+ if logits_processor is None:
1023
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1024
+ else:
1025
+ logits_processor.append(stop_words_logits_processor)
1026
+
1027
+ return super().generate(
1028
+ inputs,
1029
+ generation_config=generation_config,
1030
+ logits_processor=logits_processor,
1031
+ stopping_criteria=stopping_criteria,
1032
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1033
+ synced_gpus=synced_gpus,
1034
+ assistant_model=assistant_model,
1035
+ streamer=streamer,
1036
+ **kwargs,
1037
+ )
1038
+
1039
+
1040
+ class RotaryEmbedding(torch.nn.Module):
1041
+ def __init__(self, dim, base=10000):
1042
+ super().__init__()
1043
+ self.dim = dim
1044
+ self.base = base
1045
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1046
+ if importlib.util.find_spec("einops") is None:
1047
+ raise RuntimeError("einops is required for Rotary Embedding")
1048
+
1049
+ self._rotary_pos_emb_cache = None
1050
+ self._seq_len_cached = 0
1051
+ self._ntk_alpha_cached = 1.0
1052
+
1053
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1054
+ seqlen = max_seq_len + offset
1055
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1056
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1057
+ self.inv_freq = 1.0 / (
1058
+ base
1059
+ ** (
1060
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1061
+ / self.dim
1062
+ )
1063
+ )
1064
+ self._seq_len_cached = max(2 * seqlen, 16)
1065
+ self._ntk_alpha_cached = ntk_alpha
1066
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1067
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1068
+ emb = torch.cat((freqs, freqs), dim=-1)
1069
+ from einops import rearrange
1070
+
1071
+ self._rotary_pos_emb_cache = rearrange(emb, "n d -> 1 n 1 d")
1072
+
1073
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1074
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1075
+ return self._rotary_pos_emb_cache[:, offset : offset + max_seq_len]
1076
+
1077
+
1078
+ def _rotate_half(x):
1079
+ from einops import rearrange
1080
+
1081
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1082
+ x1, x2 = x.unbind(dim=-2)
1083
+ return torch.cat((-x2, x1), dim=-1)
1084
+
1085
+
1086
+ def apply_rotary_pos_emb(t, freqs):
1087
+ if apply_rotary_emb_func is not None and t.is_cuda:
1088
+ t_ = t.float()
1089
+ freqs = freqs.squeeze(0).squeeze(1)
1090
+ cos = freqs[:, : freqs.shape[-1] // 2].cos()
1091
+ sin = freqs[:, : freqs.shape[-1] // 2].sin()
1092
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1093
+ return output
1094
+ else:
1095
+ rot_dim = freqs.shape[-1]
1096
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1097
+ t_ = t_.float()
1098
+ t_pass_ = t_pass_.float()
1099
+ t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin())
1100
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1101
+
1102
+
1103
+ class RMSNorm(torch.nn.Module):
1104
+ def __init__(self, dim: int, eps: float = 1e-6):
1105
+ super().__init__()
1106
+ self.eps = eps
1107
+ self.weight = nn.Parameter(torch.ones(dim))
1108
+
1109
+ def _norm(self, x):
1110
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1111
+
1112
+ def forward(self, x):
1113
+ if rms_norm is not None and x.is_cuda:
1114
+ return rms_norm(x, self.weight, self.eps)
1115
+ else:
1116
+ output = self._norm(x.float()).type_as(x)
1117
+ return output * self.weight
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb4fd3b755f3a45b5f3381d1c05f0d2e984871760b9ca66a0bd1c990ba3c95b2
3
+ size 9969772092
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c27c9f660aab066bc81e063dc851dbbe7a74ff23bee528307bbb8c9cd8c171e1
3
+ size 9346496305
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,860 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 19315967488
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
9
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.h.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.h.10.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.h.10.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.h.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.h.11.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.h.11.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.h.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.h.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.h.12.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.h.12.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.h.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.h.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.h.13.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.h.13.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.h.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.h.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.h.14.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.h.14.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.h.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.h.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.h.15.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.h.15.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.h.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.h.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.h.16.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.h.16.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.h.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.h.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.h.17.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.h.17.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.h.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.h.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.h.18.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.h.18.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.h.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.h.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.h.19.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.h.19.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
105
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "transformer.h.2.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
110
+ "transformer.h.2.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
111
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
112
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
113
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "transformer.h.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
115
+ "transformer.h.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
116
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
117
+ "transformer.h.20.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
118
+ "transformer.h.20.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
119
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
120
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
121
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "transformer.h.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
123
+ "transformer.h.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
124
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
125
+ "transformer.h.21.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
126
+ "transformer.h.21.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
127
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
128
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
129
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
130
+ "transformer.h.22.ln_1.weight": "pytorch_model-00002-of-00002.bin",
131
+ "transformer.h.22.ln_2.weight": "pytorch_model-00002-of-00002.bin",
132
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
133
+ "transformer.h.22.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
134
+ "transformer.h.22.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
135
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
136
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
137
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
138
+ "transformer.h.23.ln_1.weight": "pytorch_model-00002-of-00002.bin",
139
+ "transformer.h.23.ln_2.weight": "pytorch_model-00002-of-00002.bin",
140
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
141
+ "transformer.h.23.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
142
+ "transformer.h.23.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
143
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
144
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
145
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "transformer.h.24.ln_1.weight": "pytorch_model-00002-of-00002.bin",
147
+ "transformer.h.24.ln_2.weight": "pytorch_model-00002-of-00002.bin",
148
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
149
+ "transformer.h.24.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
150
+ "transformer.h.24.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
151
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
152
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
153
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "transformer.h.25.ln_1.weight": "pytorch_model-00002-of-00002.bin",
155
+ "transformer.h.25.ln_2.weight": "pytorch_model-00002-of-00002.bin",
156
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
157
+ "transformer.h.25.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
158
+ "transformer.h.25.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
159
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
160
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
161
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
162
+ "transformer.h.26.ln_1.weight": "pytorch_model-00002-of-00002.bin",
163
+ "transformer.h.26.ln_2.weight": "pytorch_model-00002-of-00002.bin",
164
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "transformer.h.26.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
166
+ "transformer.h.26.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
167
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
168
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
169
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "transformer.h.27.ln_1.weight": "pytorch_model-00002-of-00002.bin",
171
+ "transformer.h.27.ln_2.weight": "pytorch_model-00002-of-00002.bin",
172
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "transformer.h.27.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
174
+ "transformer.h.27.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
175
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
176
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
177
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "transformer.h.28.ln_1.weight": "pytorch_model-00002-of-00002.bin",
179
+ "transformer.h.28.ln_2.weight": "pytorch_model-00002-of-00002.bin",
180
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "transformer.h.28.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
182
+ "transformer.h.28.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
183
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
184
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
185
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "transformer.h.29.ln_1.weight": "pytorch_model-00002-of-00002.bin",
187
+ "transformer.h.29.ln_2.weight": "pytorch_model-00002-of-00002.bin",
188
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
189
+ "transformer.h.29.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
190
+ "transformer.h.29.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
191
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.h.3.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.h.3.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
199
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
200
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
201
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "transformer.h.30.ln_1.weight": "pytorch_model-00002-of-00002.bin",
203
+ "transformer.h.30.ln_2.weight": "pytorch_model-00002-of-00002.bin",
204
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "transformer.h.30.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
206
+ "transformer.h.30.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
207
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
208
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
209
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "transformer.h.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
211
+ "transformer.h.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
212
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "transformer.h.31.mlp.w1.weight": "pytorch_model-00002-of-00002.bin",
214
+ "transformer.h.31.mlp.w2.weight": "pytorch_model-00002-of-00002.bin",
215
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
216
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
217
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
219
+ "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
220
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "transformer.h.4.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
222
+ "transformer.h.4.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
223
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
224
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
225
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
226
+ "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
227
+ "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
228
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
229
+ "transformer.h.5.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
230
+ "transformer.h.5.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
231
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
232
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
233
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
234
+ "transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
235
+ "transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
236
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
237
+ "transformer.h.6.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
238
+ "transformer.h.6.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
239
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
240
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
241
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
243
+ "transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
244
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "transformer.h.7.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
246
+ "transformer.h.7.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
247
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
248
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
249
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
251
+ "transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
252
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "transformer.h.8.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
254
+ "transformer.h.8.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
255
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
256
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
257
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
259
+ "transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
260
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
261
+ "transformer.h.9.mlp.w1.weight": "pytorch_model-00001-of-00002.bin",
262
+ "transformer.h.9.mlp.w2.weight": "pytorch_model-00001-of-00002.bin",
263
+ "transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
264
+ "transformer.visual.attn_pool.attn.in_proj_bias": "pytorch_model-00002-of-00002.bin",
265
+ "transformer.visual.attn_pool.attn.in_proj_weight": "pytorch_model-00002-of-00002.bin",
266
+ "transformer.visual.attn_pool.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
267
+ "transformer.visual.attn_pool.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "transformer.visual.attn_pool.kv_proj.weight": "pytorch_model-00002-of-00002.bin",
269
+ "transformer.visual.attn_pool.ln_kv.bias": "pytorch_model-00002-of-00002.bin",
270
+ "transformer.visual.attn_pool.ln_kv.weight": "pytorch_model-00002-of-00002.bin",
271
+ "transformer.visual.attn_pool.ln_q.bias": "pytorch_model-00002-of-00002.bin",
272
+ "transformer.visual.attn_pool.ln_q.weight": "pytorch_model-00002-of-00002.bin",
273
+ "transformer.visual.attn_pool.pos_embed": "pytorch_model-00002-of-00002.bin",
274
+ "transformer.visual.attn_pool.query": "pytorch_model-00002-of-00002.bin",
275
+ "transformer.visual.conv1.weight": "pytorch_model-00002-of-00002.bin",
276
+ "transformer.visual.ln_post.bias": "pytorch_model-00002-of-00002.bin",
277
+ "transformer.visual.ln_post.weight": "pytorch_model-00002-of-00002.bin",
278
+ "transformer.visual.ln_pre.bias": "pytorch_model-00002-of-00002.bin",
279
+ "transformer.visual.ln_pre.weight": "pytorch_model-00002-of-00002.bin",
280
+ "transformer.visual.positional_embedding": "pytorch_model-00002-of-00002.bin",
281
+ "transformer.visual.proj": "pytorch_model-00002-of-00002.bin",
282
+ "transformer.visual.transformer.resblocks.0.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
283
+ "transformer.visual.transformer.resblocks.0.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
284
+ "transformer.visual.transformer.resblocks.0.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
285
+ "transformer.visual.transformer.resblocks.0.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
286
+ "transformer.visual.transformer.resblocks.0.ln_1.bias": "pytorch_model-00002-of-00002.bin",
287
+ "transformer.visual.transformer.resblocks.0.ln_1.weight": "pytorch_model-00002-of-00002.bin",
288
+ "transformer.visual.transformer.resblocks.0.ln_2.bias": "pytorch_model-00002-of-00002.bin",
289
+ "transformer.visual.transformer.resblocks.0.ln_2.weight": "pytorch_model-00002-of-00002.bin",
290
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
291
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
292
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
293
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
294
+ "transformer.visual.transformer.resblocks.1.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
295
+ "transformer.visual.transformer.resblocks.1.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
296
+ "transformer.visual.transformer.resblocks.1.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
297
+ "transformer.visual.transformer.resblocks.1.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
298
+ "transformer.visual.transformer.resblocks.1.ln_1.bias": "pytorch_model-00002-of-00002.bin",
299
+ "transformer.visual.transformer.resblocks.1.ln_1.weight": "pytorch_model-00002-of-00002.bin",
300
+ "transformer.visual.transformer.resblocks.1.ln_2.bias": "pytorch_model-00002-of-00002.bin",
301
+ "transformer.visual.transformer.resblocks.1.ln_2.weight": "pytorch_model-00002-of-00002.bin",
302
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
303
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
304
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
305
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
306
+ "transformer.visual.transformer.resblocks.10.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
307
+ "transformer.visual.transformer.resblocks.10.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
308
+ "transformer.visual.transformer.resblocks.10.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
309
+ "transformer.visual.transformer.resblocks.10.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
310
+ "transformer.visual.transformer.resblocks.10.ln_1.bias": "pytorch_model-00002-of-00002.bin",
311
+ "transformer.visual.transformer.resblocks.10.ln_1.weight": "pytorch_model-00002-of-00002.bin",
312
+ "transformer.visual.transformer.resblocks.10.ln_2.bias": "pytorch_model-00002-of-00002.bin",
313
+ "transformer.visual.transformer.resblocks.10.ln_2.weight": "pytorch_model-00002-of-00002.bin",
314
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
315
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
316
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
317
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
318
+ "transformer.visual.transformer.resblocks.11.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
319
+ "transformer.visual.transformer.resblocks.11.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
320
+ "transformer.visual.transformer.resblocks.11.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
321
+ "transformer.visual.transformer.resblocks.11.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
322
+ "transformer.visual.transformer.resblocks.11.ln_1.bias": "pytorch_model-00002-of-00002.bin",
323
+ "transformer.visual.transformer.resblocks.11.ln_1.weight": "pytorch_model-00002-of-00002.bin",
324
+ "transformer.visual.transformer.resblocks.11.ln_2.bias": "pytorch_model-00002-of-00002.bin",
325
+ "transformer.visual.transformer.resblocks.11.ln_2.weight": "pytorch_model-00002-of-00002.bin",
326
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
327
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
328
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
329
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
330
+ "transformer.visual.transformer.resblocks.12.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
331
+ "transformer.visual.transformer.resblocks.12.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
332
+ "transformer.visual.transformer.resblocks.12.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
333
+ "transformer.visual.transformer.resblocks.12.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
334
+ "transformer.visual.transformer.resblocks.12.ln_1.bias": "pytorch_model-00002-of-00002.bin",
335
+ "transformer.visual.transformer.resblocks.12.ln_1.weight": "pytorch_model-00002-of-00002.bin",
336
+ "transformer.visual.transformer.resblocks.12.ln_2.bias": "pytorch_model-00002-of-00002.bin",
337
+ "transformer.visual.transformer.resblocks.12.ln_2.weight": "pytorch_model-00002-of-00002.bin",
338
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
339
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
340
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
341
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
342
+ "transformer.visual.transformer.resblocks.13.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
343
+ "transformer.visual.transformer.resblocks.13.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
344
+ "transformer.visual.transformer.resblocks.13.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
345
+ "transformer.visual.transformer.resblocks.13.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
346
+ "transformer.visual.transformer.resblocks.13.ln_1.bias": "pytorch_model-00002-of-00002.bin",
347
+ "transformer.visual.transformer.resblocks.13.ln_1.weight": "pytorch_model-00002-of-00002.bin",
348
+ "transformer.visual.transformer.resblocks.13.ln_2.bias": "pytorch_model-00002-of-00002.bin",
349
+ "transformer.visual.transformer.resblocks.13.ln_2.weight": "pytorch_model-00002-of-00002.bin",
350
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
351
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
352
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
353
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
354
+ "transformer.visual.transformer.resblocks.14.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
355
+ "transformer.visual.transformer.resblocks.14.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
356
+ "transformer.visual.transformer.resblocks.14.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
357
+ "transformer.visual.transformer.resblocks.14.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
358
+ "transformer.visual.transformer.resblocks.14.ln_1.bias": "pytorch_model-00002-of-00002.bin",
359
+ "transformer.visual.transformer.resblocks.14.ln_1.weight": "pytorch_model-00002-of-00002.bin",
360
+ "transformer.visual.transformer.resblocks.14.ln_2.bias": "pytorch_model-00002-of-00002.bin",
361
+ "transformer.visual.transformer.resblocks.14.ln_2.weight": "pytorch_model-00002-of-00002.bin",
362
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
363
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
364
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
365
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
366
+ "transformer.visual.transformer.resblocks.15.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
367
+ "transformer.visual.transformer.resblocks.15.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
368
+ "transformer.visual.transformer.resblocks.15.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
369
+ "transformer.visual.transformer.resblocks.15.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
370
+ "transformer.visual.transformer.resblocks.15.ln_1.bias": "pytorch_model-00002-of-00002.bin",
371
+ "transformer.visual.transformer.resblocks.15.ln_1.weight": "pytorch_model-00002-of-00002.bin",
372
+ "transformer.visual.transformer.resblocks.15.ln_2.bias": "pytorch_model-00002-of-00002.bin",
373
+ "transformer.visual.transformer.resblocks.15.ln_2.weight": "pytorch_model-00002-of-00002.bin",
374
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
375
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
376
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
377
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
378
+ "transformer.visual.transformer.resblocks.16.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
379
+ "transformer.visual.transformer.resblocks.16.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
380
+ "transformer.visual.transformer.resblocks.16.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
381
+ "transformer.visual.transformer.resblocks.16.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
382
+ "transformer.visual.transformer.resblocks.16.ln_1.bias": "pytorch_model-00002-of-00002.bin",
383
+ "transformer.visual.transformer.resblocks.16.ln_1.weight": "pytorch_model-00002-of-00002.bin",
384
+ "transformer.visual.transformer.resblocks.16.ln_2.bias": "pytorch_model-00002-of-00002.bin",
385
+ "transformer.visual.transformer.resblocks.16.ln_2.weight": "pytorch_model-00002-of-00002.bin",
386
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
387
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
388
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
389
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
390
+ "transformer.visual.transformer.resblocks.17.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
391
+ "transformer.visual.transformer.resblocks.17.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
392
+ "transformer.visual.transformer.resblocks.17.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
393
+ "transformer.visual.transformer.resblocks.17.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
394
+ "transformer.visual.transformer.resblocks.17.ln_1.bias": "pytorch_model-00002-of-00002.bin",
395
+ "transformer.visual.transformer.resblocks.17.ln_1.weight": "pytorch_model-00002-of-00002.bin",
396
+ "transformer.visual.transformer.resblocks.17.ln_2.bias": "pytorch_model-00002-of-00002.bin",
397
+ "transformer.visual.transformer.resblocks.17.ln_2.weight": "pytorch_model-00002-of-00002.bin",
398
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
399
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
400
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
401
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
402
+ "transformer.visual.transformer.resblocks.18.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
403
+ "transformer.visual.transformer.resblocks.18.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
404
+ "transformer.visual.transformer.resblocks.18.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
405
+ "transformer.visual.transformer.resblocks.18.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
406
+ "transformer.visual.transformer.resblocks.18.ln_1.bias": "pytorch_model-00002-of-00002.bin",
407
+ "transformer.visual.transformer.resblocks.18.ln_1.weight": "pytorch_model-00002-of-00002.bin",
408
+ "transformer.visual.transformer.resblocks.18.ln_2.bias": "pytorch_model-00002-of-00002.bin",
409
+ "transformer.visual.transformer.resblocks.18.ln_2.weight": "pytorch_model-00002-of-00002.bin",
410
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
411
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
412
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
413
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
414
+ "transformer.visual.transformer.resblocks.19.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
415
+ "transformer.visual.transformer.resblocks.19.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
416
+ "transformer.visual.transformer.resblocks.19.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
417
+ "transformer.visual.transformer.resblocks.19.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
418
+ "transformer.visual.transformer.resblocks.19.ln_1.bias": "pytorch_model-00002-of-00002.bin",
419
+ "transformer.visual.transformer.resblocks.19.ln_1.weight": "pytorch_model-00002-of-00002.bin",
420
+ "transformer.visual.transformer.resblocks.19.ln_2.bias": "pytorch_model-00002-of-00002.bin",
421
+ "transformer.visual.transformer.resblocks.19.ln_2.weight": "pytorch_model-00002-of-00002.bin",
422
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
423
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
424
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
425
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
426
+ "transformer.visual.transformer.resblocks.2.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
427
+ "transformer.visual.transformer.resblocks.2.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
428
+ "transformer.visual.transformer.resblocks.2.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
429
+ "transformer.visual.transformer.resblocks.2.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
430
+ "transformer.visual.transformer.resblocks.2.ln_1.bias": "pytorch_model-00002-of-00002.bin",
431
+ "transformer.visual.transformer.resblocks.2.ln_1.weight": "pytorch_model-00002-of-00002.bin",
432
+ "transformer.visual.transformer.resblocks.2.ln_2.bias": "pytorch_model-00002-of-00002.bin",
433
+ "transformer.visual.transformer.resblocks.2.ln_2.weight": "pytorch_model-00002-of-00002.bin",
434
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
435
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
436
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
437
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
438
+ "transformer.visual.transformer.resblocks.20.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
439
+ "transformer.visual.transformer.resblocks.20.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
440
+ "transformer.visual.transformer.resblocks.20.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
441
+ "transformer.visual.transformer.resblocks.20.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
442
+ "transformer.visual.transformer.resblocks.20.ln_1.bias": "pytorch_model-00002-of-00002.bin",
443
+ "transformer.visual.transformer.resblocks.20.ln_1.weight": "pytorch_model-00002-of-00002.bin",
444
+ "transformer.visual.transformer.resblocks.20.ln_2.bias": "pytorch_model-00002-of-00002.bin",
445
+ "transformer.visual.transformer.resblocks.20.ln_2.weight": "pytorch_model-00002-of-00002.bin",
446
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
447
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
448
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
449
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
450
+ "transformer.visual.transformer.resblocks.21.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
451
+ "transformer.visual.transformer.resblocks.21.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
452
+ "transformer.visual.transformer.resblocks.21.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
453
+ "transformer.visual.transformer.resblocks.21.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
454
+ "transformer.visual.transformer.resblocks.21.ln_1.bias": "pytorch_model-00002-of-00002.bin",
455
+ "transformer.visual.transformer.resblocks.21.ln_1.weight": "pytorch_model-00002-of-00002.bin",
456
+ "transformer.visual.transformer.resblocks.21.ln_2.bias": "pytorch_model-00002-of-00002.bin",
457
+ "transformer.visual.transformer.resblocks.21.ln_2.weight": "pytorch_model-00002-of-00002.bin",
458
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
459
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
460
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
461
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
462
+ "transformer.visual.transformer.resblocks.22.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
463
+ "transformer.visual.transformer.resblocks.22.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
464
+ "transformer.visual.transformer.resblocks.22.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
465
+ "transformer.visual.transformer.resblocks.22.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
466
+ "transformer.visual.transformer.resblocks.22.ln_1.bias": "pytorch_model-00002-of-00002.bin",
467
+ "transformer.visual.transformer.resblocks.22.ln_1.weight": "pytorch_model-00002-of-00002.bin",
468
+ "transformer.visual.transformer.resblocks.22.ln_2.bias": "pytorch_model-00002-of-00002.bin",
469
+ "transformer.visual.transformer.resblocks.22.ln_2.weight": "pytorch_model-00002-of-00002.bin",
470
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
471
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
472
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
473
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
474
+ "transformer.visual.transformer.resblocks.23.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
475
+ "transformer.visual.transformer.resblocks.23.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
476
+ "transformer.visual.transformer.resblocks.23.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
477
+ "transformer.visual.transformer.resblocks.23.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
478
+ "transformer.visual.transformer.resblocks.23.ln_1.bias": "pytorch_model-00002-of-00002.bin",
479
+ "transformer.visual.transformer.resblocks.23.ln_1.weight": "pytorch_model-00002-of-00002.bin",
480
+ "transformer.visual.transformer.resblocks.23.ln_2.bias": "pytorch_model-00002-of-00002.bin",
481
+ "transformer.visual.transformer.resblocks.23.ln_2.weight": "pytorch_model-00002-of-00002.bin",
482
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
483
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
484
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
485
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
486
+ "transformer.visual.transformer.resblocks.24.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
487
+ "transformer.visual.transformer.resblocks.24.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
488
+ "transformer.visual.transformer.resblocks.24.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
489
+ "transformer.visual.transformer.resblocks.24.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
490
+ "transformer.visual.transformer.resblocks.24.ln_1.bias": "pytorch_model-00002-of-00002.bin",
491
+ "transformer.visual.transformer.resblocks.24.ln_1.weight": "pytorch_model-00002-of-00002.bin",
492
+ "transformer.visual.transformer.resblocks.24.ln_2.bias": "pytorch_model-00002-of-00002.bin",
493
+ "transformer.visual.transformer.resblocks.24.ln_2.weight": "pytorch_model-00002-of-00002.bin",
494
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
495
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
496
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
497
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
498
+ "transformer.visual.transformer.resblocks.25.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
499
+ "transformer.visual.transformer.resblocks.25.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
500
+ "transformer.visual.transformer.resblocks.25.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
501
+ "transformer.visual.transformer.resblocks.25.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
502
+ "transformer.visual.transformer.resblocks.25.ln_1.bias": "pytorch_model-00002-of-00002.bin",
503
+ "transformer.visual.transformer.resblocks.25.ln_1.weight": "pytorch_model-00002-of-00002.bin",
504
+ "transformer.visual.transformer.resblocks.25.ln_2.bias": "pytorch_model-00002-of-00002.bin",
505
+ "transformer.visual.transformer.resblocks.25.ln_2.weight": "pytorch_model-00002-of-00002.bin",
506
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
507
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
508
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
509
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
510
+ "transformer.visual.transformer.resblocks.26.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
511
+ "transformer.visual.transformer.resblocks.26.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
512
+ "transformer.visual.transformer.resblocks.26.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
513
+ "transformer.visual.transformer.resblocks.26.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
514
+ "transformer.visual.transformer.resblocks.26.ln_1.bias": "pytorch_model-00002-of-00002.bin",
515
+ "transformer.visual.transformer.resblocks.26.ln_1.weight": "pytorch_model-00002-of-00002.bin",
516
+ "transformer.visual.transformer.resblocks.26.ln_2.bias": "pytorch_model-00002-of-00002.bin",
517
+ "transformer.visual.transformer.resblocks.26.ln_2.weight": "pytorch_model-00002-of-00002.bin",
518
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
519
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
520
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
521
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
522
+ "transformer.visual.transformer.resblocks.27.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
523
+ "transformer.visual.transformer.resblocks.27.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
524
+ "transformer.visual.transformer.resblocks.27.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
525
+ "transformer.visual.transformer.resblocks.27.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
526
+ "transformer.visual.transformer.resblocks.27.ln_1.bias": "pytorch_model-00002-of-00002.bin",
527
+ "transformer.visual.transformer.resblocks.27.ln_1.weight": "pytorch_model-00002-of-00002.bin",
528
+ "transformer.visual.transformer.resblocks.27.ln_2.bias": "pytorch_model-00002-of-00002.bin",
529
+ "transformer.visual.transformer.resblocks.27.ln_2.weight": "pytorch_model-00002-of-00002.bin",
530
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
531
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
532
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
533
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
534
+ "transformer.visual.transformer.resblocks.28.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
535
+ "transformer.visual.transformer.resblocks.28.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
536
+ "transformer.visual.transformer.resblocks.28.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
537
+ "transformer.visual.transformer.resblocks.28.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
538
+ "transformer.visual.transformer.resblocks.28.ln_1.bias": "pytorch_model-00002-of-00002.bin",
539
+ "transformer.visual.transformer.resblocks.28.ln_1.weight": "pytorch_model-00002-of-00002.bin",
540
+ "transformer.visual.transformer.resblocks.28.ln_2.bias": "pytorch_model-00002-of-00002.bin",
541
+ "transformer.visual.transformer.resblocks.28.ln_2.weight": "pytorch_model-00002-of-00002.bin",
542
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
543
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
544
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
545
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
546
+ "transformer.visual.transformer.resblocks.29.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
547
+ "transformer.visual.transformer.resblocks.29.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
548
+ "transformer.visual.transformer.resblocks.29.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
549
+ "transformer.visual.transformer.resblocks.29.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
550
+ "transformer.visual.transformer.resblocks.29.ln_1.bias": "pytorch_model-00002-of-00002.bin",
551
+ "transformer.visual.transformer.resblocks.29.ln_1.weight": "pytorch_model-00002-of-00002.bin",
552
+ "transformer.visual.transformer.resblocks.29.ln_2.bias": "pytorch_model-00002-of-00002.bin",
553
+ "transformer.visual.transformer.resblocks.29.ln_2.weight": "pytorch_model-00002-of-00002.bin",
554
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
555
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
556
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
557
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
558
+ "transformer.visual.transformer.resblocks.3.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
559
+ "transformer.visual.transformer.resblocks.3.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
560
+ "transformer.visual.transformer.resblocks.3.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
561
+ "transformer.visual.transformer.resblocks.3.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
562
+ "transformer.visual.transformer.resblocks.3.ln_1.bias": "pytorch_model-00002-of-00002.bin",
563
+ "transformer.visual.transformer.resblocks.3.ln_1.weight": "pytorch_model-00002-of-00002.bin",
564
+ "transformer.visual.transformer.resblocks.3.ln_2.bias": "pytorch_model-00002-of-00002.bin",
565
+ "transformer.visual.transformer.resblocks.3.ln_2.weight": "pytorch_model-00002-of-00002.bin",
566
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
567
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
568
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
569
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
570
+ "transformer.visual.transformer.resblocks.30.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
571
+ "transformer.visual.transformer.resblocks.30.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
572
+ "transformer.visual.transformer.resblocks.30.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
573
+ "transformer.visual.transformer.resblocks.30.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
574
+ "transformer.visual.transformer.resblocks.30.ln_1.bias": "pytorch_model-00002-of-00002.bin",
575
+ "transformer.visual.transformer.resblocks.30.ln_1.weight": "pytorch_model-00002-of-00002.bin",
576
+ "transformer.visual.transformer.resblocks.30.ln_2.bias": "pytorch_model-00002-of-00002.bin",
577
+ "transformer.visual.transformer.resblocks.30.ln_2.weight": "pytorch_model-00002-of-00002.bin",
578
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
579
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
580
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
581
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
582
+ "transformer.visual.transformer.resblocks.31.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
583
+ "transformer.visual.transformer.resblocks.31.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
584
+ "transformer.visual.transformer.resblocks.31.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
585
+ "transformer.visual.transformer.resblocks.31.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
586
+ "transformer.visual.transformer.resblocks.31.ln_1.bias": "pytorch_model-00002-of-00002.bin",
587
+ "transformer.visual.transformer.resblocks.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
588
+ "transformer.visual.transformer.resblocks.31.ln_2.bias": "pytorch_model-00002-of-00002.bin",
589
+ "transformer.visual.transformer.resblocks.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
590
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
591
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
592
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
593
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
594
+ "transformer.visual.transformer.resblocks.32.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
595
+ "transformer.visual.transformer.resblocks.32.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
596
+ "transformer.visual.transformer.resblocks.32.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
597
+ "transformer.visual.transformer.resblocks.32.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
598
+ "transformer.visual.transformer.resblocks.32.ln_1.bias": "pytorch_model-00002-of-00002.bin",
599
+ "transformer.visual.transformer.resblocks.32.ln_1.weight": "pytorch_model-00002-of-00002.bin",
600
+ "transformer.visual.transformer.resblocks.32.ln_2.bias": "pytorch_model-00002-of-00002.bin",
601
+ "transformer.visual.transformer.resblocks.32.ln_2.weight": "pytorch_model-00002-of-00002.bin",
602
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
603
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
604
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
605
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
606
+ "transformer.visual.transformer.resblocks.33.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
607
+ "transformer.visual.transformer.resblocks.33.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
608
+ "transformer.visual.transformer.resblocks.33.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
609
+ "transformer.visual.transformer.resblocks.33.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
610
+ "transformer.visual.transformer.resblocks.33.ln_1.bias": "pytorch_model-00002-of-00002.bin",
611
+ "transformer.visual.transformer.resblocks.33.ln_1.weight": "pytorch_model-00002-of-00002.bin",
612
+ "transformer.visual.transformer.resblocks.33.ln_2.bias": "pytorch_model-00002-of-00002.bin",
613
+ "transformer.visual.transformer.resblocks.33.ln_2.weight": "pytorch_model-00002-of-00002.bin",
614
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
615
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
616
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
617
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
618
+ "transformer.visual.transformer.resblocks.34.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
619
+ "transformer.visual.transformer.resblocks.34.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
620
+ "transformer.visual.transformer.resblocks.34.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
621
+ "transformer.visual.transformer.resblocks.34.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
622
+ "transformer.visual.transformer.resblocks.34.ln_1.bias": "pytorch_model-00002-of-00002.bin",
623
+ "transformer.visual.transformer.resblocks.34.ln_1.weight": "pytorch_model-00002-of-00002.bin",
624
+ "transformer.visual.transformer.resblocks.34.ln_2.bias": "pytorch_model-00002-of-00002.bin",
625
+ "transformer.visual.transformer.resblocks.34.ln_2.weight": "pytorch_model-00002-of-00002.bin",
626
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
627
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
628
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
629
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
630
+ "transformer.visual.transformer.resblocks.35.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
631
+ "transformer.visual.transformer.resblocks.35.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
632
+ "transformer.visual.transformer.resblocks.35.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
633
+ "transformer.visual.transformer.resblocks.35.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
634
+ "transformer.visual.transformer.resblocks.35.ln_1.bias": "pytorch_model-00002-of-00002.bin",
635
+ "transformer.visual.transformer.resblocks.35.ln_1.weight": "pytorch_model-00002-of-00002.bin",
636
+ "transformer.visual.transformer.resblocks.35.ln_2.bias": "pytorch_model-00002-of-00002.bin",
637
+ "transformer.visual.transformer.resblocks.35.ln_2.weight": "pytorch_model-00002-of-00002.bin",
638
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
639
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
640
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
641
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
642
+ "transformer.visual.transformer.resblocks.36.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
643
+ "transformer.visual.transformer.resblocks.36.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
644
+ "transformer.visual.transformer.resblocks.36.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
645
+ "transformer.visual.transformer.resblocks.36.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
646
+ "transformer.visual.transformer.resblocks.36.ln_1.bias": "pytorch_model-00002-of-00002.bin",
647
+ "transformer.visual.transformer.resblocks.36.ln_1.weight": "pytorch_model-00002-of-00002.bin",
648
+ "transformer.visual.transformer.resblocks.36.ln_2.bias": "pytorch_model-00002-of-00002.bin",
649
+ "transformer.visual.transformer.resblocks.36.ln_2.weight": "pytorch_model-00002-of-00002.bin",
650
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
651
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
652
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
653
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
654
+ "transformer.visual.transformer.resblocks.37.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
655
+ "transformer.visual.transformer.resblocks.37.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
656
+ "transformer.visual.transformer.resblocks.37.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
657
+ "transformer.visual.transformer.resblocks.37.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
658
+ "transformer.visual.transformer.resblocks.37.ln_1.bias": "pytorch_model-00002-of-00002.bin",
659
+ "transformer.visual.transformer.resblocks.37.ln_1.weight": "pytorch_model-00002-of-00002.bin",
660
+ "transformer.visual.transformer.resblocks.37.ln_2.bias": "pytorch_model-00002-of-00002.bin",
661
+ "transformer.visual.transformer.resblocks.37.ln_2.weight": "pytorch_model-00002-of-00002.bin",
662
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
663
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
664
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
665
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
666
+ "transformer.visual.transformer.resblocks.38.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
667
+ "transformer.visual.transformer.resblocks.38.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
668
+ "transformer.visual.transformer.resblocks.38.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
669
+ "transformer.visual.transformer.resblocks.38.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
670
+ "transformer.visual.transformer.resblocks.38.ln_1.bias": "pytorch_model-00002-of-00002.bin",
671
+ "transformer.visual.transformer.resblocks.38.ln_1.weight": "pytorch_model-00002-of-00002.bin",
672
+ "transformer.visual.transformer.resblocks.38.ln_2.bias": "pytorch_model-00002-of-00002.bin",
673
+ "transformer.visual.transformer.resblocks.38.ln_2.weight": "pytorch_model-00002-of-00002.bin",
674
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
675
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
676
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
677
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
678
+ "transformer.visual.transformer.resblocks.39.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
679
+ "transformer.visual.transformer.resblocks.39.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
680
+ "transformer.visual.transformer.resblocks.39.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
681
+ "transformer.visual.transformer.resblocks.39.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
682
+ "transformer.visual.transformer.resblocks.39.ln_1.bias": "pytorch_model-00002-of-00002.bin",
683
+ "transformer.visual.transformer.resblocks.39.ln_1.weight": "pytorch_model-00002-of-00002.bin",
684
+ "transformer.visual.transformer.resblocks.39.ln_2.bias": "pytorch_model-00002-of-00002.bin",
685
+ "transformer.visual.transformer.resblocks.39.ln_2.weight": "pytorch_model-00002-of-00002.bin",
686
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
687
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
688
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
689
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
690
+ "transformer.visual.transformer.resblocks.4.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
691
+ "transformer.visual.transformer.resblocks.4.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
692
+ "transformer.visual.transformer.resblocks.4.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
693
+ "transformer.visual.transformer.resblocks.4.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
694
+ "transformer.visual.transformer.resblocks.4.ln_1.bias": "pytorch_model-00002-of-00002.bin",
695
+ "transformer.visual.transformer.resblocks.4.ln_1.weight": "pytorch_model-00002-of-00002.bin",
696
+ "transformer.visual.transformer.resblocks.4.ln_2.bias": "pytorch_model-00002-of-00002.bin",
697
+ "transformer.visual.transformer.resblocks.4.ln_2.weight": "pytorch_model-00002-of-00002.bin",
698
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
699
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
700
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
701
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
702
+ "transformer.visual.transformer.resblocks.40.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
703
+ "transformer.visual.transformer.resblocks.40.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
704
+ "transformer.visual.transformer.resblocks.40.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
705
+ "transformer.visual.transformer.resblocks.40.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
706
+ "transformer.visual.transformer.resblocks.40.ln_1.bias": "pytorch_model-00002-of-00002.bin",
707
+ "transformer.visual.transformer.resblocks.40.ln_1.weight": "pytorch_model-00002-of-00002.bin",
708
+ "transformer.visual.transformer.resblocks.40.ln_2.bias": "pytorch_model-00002-of-00002.bin",
709
+ "transformer.visual.transformer.resblocks.40.ln_2.weight": "pytorch_model-00002-of-00002.bin",
710
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
711
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
712
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
713
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
714
+ "transformer.visual.transformer.resblocks.41.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
715
+ "transformer.visual.transformer.resblocks.41.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
716
+ "transformer.visual.transformer.resblocks.41.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
717
+ "transformer.visual.transformer.resblocks.41.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
718
+ "transformer.visual.transformer.resblocks.41.ln_1.bias": "pytorch_model-00002-of-00002.bin",
719
+ "transformer.visual.transformer.resblocks.41.ln_1.weight": "pytorch_model-00002-of-00002.bin",
720
+ "transformer.visual.transformer.resblocks.41.ln_2.bias": "pytorch_model-00002-of-00002.bin",
721
+ "transformer.visual.transformer.resblocks.41.ln_2.weight": "pytorch_model-00002-of-00002.bin",
722
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
723
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
724
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
725
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
726
+ "transformer.visual.transformer.resblocks.42.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
727
+ "transformer.visual.transformer.resblocks.42.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
728
+ "transformer.visual.transformer.resblocks.42.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
729
+ "transformer.visual.transformer.resblocks.42.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
730
+ "transformer.visual.transformer.resblocks.42.ln_1.bias": "pytorch_model-00002-of-00002.bin",
731
+ "transformer.visual.transformer.resblocks.42.ln_1.weight": "pytorch_model-00002-of-00002.bin",
732
+ "transformer.visual.transformer.resblocks.42.ln_2.bias": "pytorch_model-00002-of-00002.bin",
733
+ "transformer.visual.transformer.resblocks.42.ln_2.weight": "pytorch_model-00002-of-00002.bin",
734
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
735
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
736
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
737
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
738
+ "transformer.visual.transformer.resblocks.43.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
739
+ "transformer.visual.transformer.resblocks.43.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
740
+ "transformer.visual.transformer.resblocks.43.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
741
+ "transformer.visual.transformer.resblocks.43.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
742
+ "transformer.visual.transformer.resblocks.43.ln_1.bias": "pytorch_model-00002-of-00002.bin",
743
+ "transformer.visual.transformer.resblocks.43.ln_1.weight": "pytorch_model-00002-of-00002.bin",
744
+ "transformer.visual.transformer.resblocks.43.ln_2.bias": "pytorch_model-00002-of-00002.bin",
745
+ "transformer.visual.transformer.resblocks.43.ln_2.weight": "pytorch_model-00002-of-00002.bin",
746
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
747
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
748
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
749
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
750
+ "transformer.visual.transformer.resblocks.44.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
751
+ "transformer.visual.transformer.resblocks.44.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
752
+ "transformer.visual.transformer.resblocks.44.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
753
+ "transformer.visual.transformer.resblocks.44.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
754
+ "transformer.visual.transformer.resblocks.44.ln_1.bias": "pytorch_model-00002-of-00002.bin",
755
+ "transformer.visual.transformer.resblocks.44.ln_1.weight": "pytorch_model-00002-of-00002.bin",
756
+ "transformer.visual.transformer.resblocks.44.ln_2.bias": "pytorch_model-00002-of-00002.bin",
757
+ "transformer.visual.transformer.resblocks.44.ln_2.weight": "pytorch_model-00002-of-00002.bin",
758
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
759
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
760
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
761
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
762
+ "transformer.visual.transformer.resblocks.45.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
763
+ "transformer.visual.transformer.resblocks.45.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
764
+ "transformer.visual.transformer.resblocks.45.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
765
+ "transformer.visual.transformer.resblocks.45.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
766
+ "transformer.visual.transformer.resblocks.45.ln_1.bias": "pytorch_model-00002-of-00002.bin",
767
+ "transformer.visual.transformer.resblocks.45.ln_1.weight": "pytorch_model-00002-of-00002.bin",
768
+ "transformer.visual.transformer.resblocks.45.ln_2.bias": "pytorch_model-00002-of-00002.bin",
769
+ "transformer.visual.transformer.resblocks.45.ln_2.weight": "pytorch_model-00002-of-00002.bin",
770
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
771
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
772
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
773
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
774
+ "transformer.visual.transformer.resblocks.46.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
775
+ "transformer.visual.transformer.resblocks.46.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
776
+ "transformer.visual.transformer.resblocks.46.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
777
+ "transformer.visual.transformer.resblocks.46.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
778
+ "transformer.visual.transformer.resblocks.46.ln_1.bias": "pytorch_model-00002-of-00002.bin",
779
+ "transformer.visual.transformer.resblocks.46.ln_1.weight": "pytorch_model-00002-of-00002.bin",
780
+ "transformer.visual.transformer.resblocks.46.ln_2.bias": "pytorch_model-00002-of-00002.bin",
781
+ "transformer.visual.transformer.resblocks.46.ln_2.weight": "pytorch_model-00002-of-00002.bin",
782
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
783
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
784
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
785
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
786
+ "transformer.visual.transformer.resblocks.47.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
787
+ "transformer.visual.transformer.resblocks.47.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
788
+ "transformer.visual.transformer.resblocks.47.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
789
+ "transformer.visual.transformer.resblocks.47.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
790
+ "transformer.visual.transformer.resblocks.47.ln_1.bias": "pytorch_model-00002-of-00002.bin",
791
+ "transformer.visual.transformer.resblocks.47.ln_1.weight": "pytorch_model-00002-of-00002.bin",
792
+ "transformer.visual.transformer.resblocks.47.ln_2.bias": "pytorch_model-00002-of-00002.bin",
793
+ "transformer.visual.transformer.resblocks.47.ln_2.weight": "pytorch_model-00002-of-00002.bin",
794
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
795
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
796
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
797
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
798
+ "transformer.visual.transformer.resblocks.5.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
799
+ "transformer.visual.transformer.resblocks.5.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
800
+ "transformer.visual.transformer.resblocks.5.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
801
+ "transformer.visual.transformer.resblocks.5.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
802
+ "transformer.visual.transformer.resblocks.5.ln_1.bias": "pytorch_model-00002-of-00002.bin",
803
+ "transformer.visual.transformer.resblocks.5.ln_1.weight": "pytorch_model-00002-of-00002.bin",
804
+ "transformer.visual.transformer.resblocks.5.ln_2.bias": "pytorch_model-00002-of-00002.bin",
805
+ "transformer.visual.transformer.resblocks.5.ln_2.weight": "pytorch_model-00002-of-00002.bin",
806
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
807
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
808
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
809
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
810
+ "transformer.visual.transformer.resblocks.6.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
811
+ "transformer.visual.transformer.resblocks.6.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
812
+ "transformer.visual.transformer.resblocks.6.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
813
+ "transformer.visual.transformer.resblocks.6.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
814
+ "transformer.visual.transformer.resblocks.6.ln_1.bias": "pytorch_model-00002-of-00002.bin",
815
+ "transformer.visual.transformer.resblocks.6.ln_1.weight": "pytorch_model-00002-of-00002.bin",
816
+ "transformer.visual.transformer.resblocks.6.ln_2.bias": "pytorch_model-00002-of-00002.bin",
817
+ "transformer.visual.transformer.resblocks.6.ln_2.weight": "pytorch_model-00002-of-00002.bin",
818
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
819
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
820
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
821
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
822
+ "transformer.visual.transformer.resblocks.7.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
823
+ "transformer.visual.transformer.resblocks.7.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
824
+ "transformer.visual.transformer.resblocks.7.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
825
+ "transformer.visual.transformer.resblocks.7.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
826
+ "transformer.visual.transformer.resblocks.7.ln_1.bias": "pytorch_model-00002-of-00002.bin",
827
+ "transformer.visual.transformer.resblocks.7.ln_1.weight": "pytorch_model-00002-of-00002.bin",
828
+ "transformer.visual.transformer.resblocks.7.ln_2.bias": "pytorch_model-00002-of-00002.bin",
829
+ "transformer.visual.transformer.resblocks.7.ln_2.weight": "pytorch_model-00002-of-00002.bin",
830
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
831
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
832
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
833
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
834
+ "transformer.visual.transformer.resblocks.8.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
835
+ "transformer.visual.transformer.resblocks.8.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
836
+ "transformer.visual.transformer.resblocks.8.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
837
+ "transformer.visual.transformer.resblocks.8.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
838
+ "transformer.visual.transformer.resblocks.8.ln_1.bias": "pytorch_model-00002-of-00002.bin",
839
+ "transformer.visual.transformer.resblocks.8.ln_1.weight": "pytorch_model-00002-of-00002.bin",
840
+ "transformer.visual.transformer.resblocks.8.ln_2.bias": "pytorch_model-00002-of-00002.bin",
841
+ "transformer.visual.transformer.resblocks.8.ln_2.weight": "pytorch_model-00002-of-00002.bin",
842
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
843
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
844
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
845
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
846
+ "transformer.visual.transformer.resblocks.9.attn.in_proj.bias": "pytorch_model-00002-of-00002.bin",
847
+ "transformer.visual.transformer.resblocks.9.attn.in_proj.weight": "pytorch_model-00002-of-00002.bin",
848
+ "transformer.visual.transformer.resblocks.9.attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
849
+ "transformer.visual.transformer.resblocks.9.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
850
+ "transformer.visual.transformer.resblocks.9.ln_1.bias": "pytorch_model-00002-of-00002.bin",
851
+ "transformer.visual.transformer.resblocks.9.ln_1.weight": "pytorch_model-00002-of-00002.bin",
852
+ "transformer.visual.transformer.resblocks.9.ln_2.bias": "pytorch_model-00002-of-00002.bin",
853
+ "transformer.visual.transformer.resblocks.9.ln_2.weight": "pytorch_model-00002-of-00002.bin",
854
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
855
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
856
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
857
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
858
+ "transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
859
+ }
860
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Iterable, List, Tuple, Union
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer, logging
14
+ from transformers.generation import LogitsProcessor
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+ # Types.
19
+ HistoryType = List[Tuple[str, str]]
20
+ TokensType = List[int]
21
+ BatchTokensType = List[List[int]]
22
+
23
+
24
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
25
+ for tokens in batch:
26
+ context_length = len(tokens)
27
+ if context_length < seq_length:
28
+ tokens.extend([pad_id] * (seq_length - context_length))
29
+ return batch
30
+
31
+
32
+ def get_ltor_masks_and_position_ids(
33
+ data,
34
+ eod_token,
35
+ reset_position_ids,
36
+ reset_attention_mask,
37
+ eod_mask_loss,
38
+ ):
39
+ """Build masks and position id for left to right model."""
40
+
41
+ # Extract batch size and sequence length.
42
+ micro_batch_size, seq_length = data.size()
43
+
44
+ # Attention mask (lower triangular).
45
+ if reset_attention_mask:
46
+ att_mask_batch = micro_batch_size
47
+ else:
48
+ att_mask_batch = 1
49
+ attention_mask = torch.tril(
50
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
51
+ ).view(att_mask_batch, 1, seq_length, seq_length)
52
+
53
+ # Loss mask.
54
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
55
+ if eod_mask_loss:
56
+ loss_mask[data == eod_token] = 0.0
57
+
58
+ # Position ids.
59
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
60
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
61
+ # We need to clone as the ids will be modifed based on batch index.
62
+ if reset_position_ids:
63
+ position_ids = position_ids.clone()
64
+
65
+ if reset_position_ids or reset_attention_mask:
66
+ # Loop through the batches:
67
+ for b in range(micro_batch_size):
68
+
69
+ # Find indecies where EOD token is.
70
+ eod_index = position_ids[b, data[b] == eod_token]
71
+ # Detach indecies from positions if going to modify positions.
72
+ if reset_position_ids:
73
+ eod_index = eod_index.clone()
74
+
75
+ # Loop through EOD indecies:
76
+ prev_index = 0
77
+ for j in range(eod_index.size()[0]):
78
+ i = eod_index[j]
79
+ # Mask attention loss.
80
+ if reset_attention_mask:
81
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
82
+ # Reset positions.
83
+ if reset_position_ids:
84
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
85
+ prev_index = i + 1
86
+
87
+ # Convert attention mask to binary:
88
+ attention_mask = attention_mask < 0.5
89
+
90
+ return attention_mask, loss_mask, position_ids
91
+
92
+
93
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
94
+ """Generate batch from context tokens."""
95
+ # Move to GPU.
96
+ tokens = context_tokens.contiguous().to(context_tokens.device)
97
+ # Get the attention mask and postition ids.
98
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
99
+ tokens,
100
+ eod_id,
101
+ reset_position_ids=False,
102
+ reset_attention_mask=False,
103
+ eod_mask_loss=False,
104
+ )
105
+ return tokens, attention_mask, position_ids
106
+
107
+
108
+ def get_stop_words_ids(chat_format, tokenizer):
109
+ if chat_format == "raw":
110
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
111
+ elif chat_format == "chatml":
112
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
113
+ else:
114
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
115
+ return stop_words_ids
116
+
117
+
118
+ def make_context(
119
+ tokenizer: PreTrainedTokenizer,
120
+ query: str,
121
+ history: List[Tuple[str, str]] = None,
122
+ system: str = "",
123
+ max_window_size: int = 6144,
124
+ chat_format: str = "chatml",
125
+ ):
126
+ if history is None:
127
+ history = []
128
+
129
+ if chat_format == "chatml":
130
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
131
+ im_start_tokens = [tokenizer.im_start_id]
132
+ im_end_tokens = [tokenizer.im_end_id]
133
+ nl_tokens = tokenizer.encode("\n")
134
+
135
+ def _tokenize_str(role, content):
136
+ return f"{role}\n{content}", tokenizer.encode(
137
+ role, allowed_special=set(tokenizer.IMAGE_ST)
138
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.IMAGE_ST))
139
+
140
+ system_text, system_tokens_part = _tokenize_str("system", system)
141
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
142
+
143
+ raw_text = ""
144
+ context_tokens = []
145
+
146
+ for turn_query, turn_response in reversed(history):
147
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
148
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
149
+ if turn_response is not None:
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+ else:
160
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens
161
+ prev_chat = f"\n{im_start}{query_text}{im_end}\n"
162
+
163
+ current_context_size = (
164
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
165
+ )
166
+ if current_context_size < max_window_size:
167
+ context_tokens = next_context_tokens + context_tokens
168
+ raw_text = prev_chat + raw_text
169
+ else:
170
+ break
171
+
172
+ context_tokens = system_tokens + context_tokens
173
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
174
+ context_tokens += (
175
+ nl_tokens
176
+ + im_start_tokens
177
+ + _tokenize_str("user", query)[1]
178
+ + im_end_tokens
179
+ + nl_tokens
180
+ + im_start_tokens
181
+ + tokenizer.encode("assistant")
182
+ + nl_tokens
183
+ )
184
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
185
+
186
+ elif chat_format == "raw":
187
+ raw_text = query
188
+ context_tokens = tokenizer.encode(raw_text)
189
+ else:
190
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
191
+
192
+ return raw_text, context_tokens
193
+
194
+
195
+ def _decode_default(
196
+ tokens: List[int],
197
+ *,
198
+ stop_words: List[str],
199
+ eod_words: List[str],
200
+ tokenizer: PreTrainedTokenizer,
201
+ raw_text_len: int,
202
+ verbose: bool = False,
203
+ return_end_reason: bool = False,
204
+ errors: str='replace',
205
+ ):
206
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
207
+ if verbose:
208
+ print("\nRaw Generate: ", trim_decode_tokens)
209
+
210
+ end_reason = f"Gen length {len(tokens)}"
211
+ for stop_word in stop_words:
212
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
213
+ for eod_word in eod_words:
214
+ if eod_word in trim_decode_tokens:
215
+ end_reason = f"Gen {eod_word!r}"
216
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
217
+ trim_decode_tokens = trim_decode_tokens.strip()
218
+ if verbose:
219
+ print("\nEnd Reason:", end_reason)
220
+ print("\nGenerate: ", trim_decode_tokens)
221
+
222
+ if return_end_reason:
223
+ return trim_decode_tokens, end_reason
224
+ else:
225
+ return trim_decode_tokens
226
+
227
+
228
+ def _decode_chatml(
229
+ tokens: List[int],
230
+ *,
231
+ stop_words: List[str],
232
+ eod_token_ids: List[int],
233
+ tokenizer: PreTrainedTokenizer,
234
+ raw_text_len: int,
235
+ context_length: int,
236
+ verbose: bool = False,
237
+ return_end_reason: bool = False,
238
+ errors: str='replace'
239
+ ):
240
+ end_reason = f"Gen length {len(tokens)}"
241
+ eod_token_idx = context_length
242
+ for eod_token_idx in range(context_length, len(tokens)):
243
+ if tokens[eod_token_idx] in eod_token_ids:
244
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
245
+ break
246
+
247
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
248
+ if verbose:
249
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
250
+ print("\nRaw Generate:", trim_decode_tokens)
251
+ print("\nEnd Reason:", end_reason)
252
+ for stop_word in stop_words:
253
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
254
+ trim_decode_tokens = trim_decode_tokens.strip()
255
+ if verbose:
256
+ print("\nGenerate:", trim_decode_tokens)
257
+
258
+ if return_end_reason:
259
+ return trim_decode_tokens, end_reason
260
+ else:
261
+ return trim_decode_tokens
262
+
263
+
264
+ def decode_tokens(
265
+ tokens: Union[torch.LongTensor, TokensType],
266
+ tokenizer: PreTrainedTokenizer,
267
+ raw_text_len: int,
268
+ context_length: int,
269
+ chat_format: str,
270
+ verbose: bool = False,
271
+ return_end_reason: bool = False,
272
+ errors: str="replace",
273
+ ) -> str:
274
+ if torch.is_tensor(tokens):
275
+ tokens = tokens.cpu().numpy().tolist()
276
+
277
+ if chat_format == "chatml":
278
+ return _decode_chatml(
279
+ tokens,
280
+ stop_words=[],
281
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
282
+ tokenizer=tokenizer,
283
+ raw_text_len=raw_text_len,
284
+ context_length=context_length,
285
+ verbose=verbose,
286
+ return_end_reason=return_end_reason,
287
+ errors=errors,
288
+ )
289
+ elif chat_format == "raw":
290
+ return _decode_default(
291
+ tokens,
292
+ stop_words=["<|endoftext|>"],
293
+ eod_words=["<|endoftext|>"],
294
+ tokenizer=tokenizer,
295
+ raw_text_len=raw_text_len,
296
+ verbose=verbose,
297
+ return_end_reason=return_end_reason,
298
+ errors=errors,
299
+ )
300
+ else:
301
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
302
+
303
+
304
+ class StopWordsLogitsProcessor(LogitsProcessor):
305
+ """
306
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
307
+
308
+ Args:
309
+ stop_words_ids (:obj:`List[List[int]]`):
310
+ List of list of token ids of stop ids. In order to get the tokens of the words
311
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
312
+ add_prefix_space=True).input_ids`.
313
+ eos_token_id (:obj:`int`):
314
+ The id of the `end-of-sequence` token.
315
+ """
316
+
317
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
318
+
319
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
320
+ raise ValueError(
321
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
322
+ )
323
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
324
+ raise ValueError(
325
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
326
+ )
327
+ if any(
328
+ any(
329
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
330
+ for token_id in stop_word_ids
331
+ )
332
+ for stop_word_ids in stop_words_ids
333
+ ):
334
+ raise ValueError(
335
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
336
+ )
337
+
338
+ self.stop_words_ids = list(
339
+ filter(
340
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
341
+ )
342
+ )
343
+ self.eos_token_id = eos_token_id
344
+ for stop_token_seq in self.stop_words_ids:
345
+ assert (
346
+ len(stop_token_seq) > 0
347
+ ), "Stop words token sequences {} cannot have an empty list".format(
348
+ stop_words_ids
349
+ )
350
+
351
+ def __call__(
352
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
353
+ ) -> torch.FloatTensor:
354
+ stopped_samples = self._calc_stopped_samples(input_ids)
355
+ for i, should_stop in enumerate(stopped_samples):
356
+ if should_stop:
357
+ scores[i, self.eos_token_id] = float(2**15)
358
+ return scores
359
+
360
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
361
+ if len(tokens) == 0:
362
+ # if bad word tokens is just one token always ban it
363
+ return True
364
+ elif len(tokens) > len(prev_tokens):
365
+ # if bad word tokens are longer then prev input_ids they can't be equal
366
+ return False
367
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
368
+ # if tokens match
369
+ return True
370
+ else:
371
+ return False
372
+
373
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
374
+ stopped_samples = []
375
+ for prev_input_ids_slice in prev_input_ids:
376
+ match = False
377
+ for stop_token_seq in self.stop_words_ids:
378
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
379
+ # if tokens do not match continue
380
+ match = True
381
+ break
382
+ stopped_samples.append(match)
383
+
384
+ return stopped_samples
385
+
386
+
387
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
388
+ """This function has been mostly taken from huggingface conversational
389
+ ai code at
390
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
391
+ conversational-ai-with-transfer-learning-2d818ac26313"""
392
+
393
+ if top_k > 0:
394
+ # Remove all tokens with a probability less than the
395
+ # last token of the top-k
396
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
397
+ logits[indices_to_remove] = filter_value
398
+
399
+ if top_p > 0.0:
400
+ # Cconvert to 1D
401
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
402
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
403
+
404
+ # Remove tokens with cumulative probability above the threshold
405
+ sorted_indices_to_remove = cumulative_probs > top_p
406
+ # Shift the indices to the right to keep also the first token
407
+ # above the threshold
408
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
409
+ sorted_indices_to_remove[..., 0] = 0
410
+ for i in range(sorted_indices.size(0)):
411
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
412
+ logits[i][indices_to_remove] = filter_value
413
+
414
+ return logits
415
+
416
+
417
+ def switch(val1, val2, boolean):
418
+ boolean = boolean.type_as(val1)
419
+ return (1 - boolean) * val1 + boolean * val2
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenization_qwen.py ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import (Any, Callable, Collection, Dict, List, Optional, Set,
13
+ Tuple, Union)
14
+
15
+ import matplotlib.colors as mcolors
16
+ import matplotlib.pyplot as plt
17
+ import numpy as np
18
+ import requests
19
+ import tiktoken
20
+ from matplotlib.font_manager import FontProperties
21
+ from PIL import Image, ImageDraw, ImageFont
22
+ from transformers import AddedToken, PreTrainedTokenizer
23
+ from transformers.utils import try_to_load_from_cache
24
+
25
+ logger = logging.getLogger(__name__)
26
+
27
+
28
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
29
+
30
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
31
+ ENDOFTEXT = "<|endoftext|>"
32
+ IMSTART = "<|im_start|>"
33
+ IMEND = "<|im_end|>"
34
+ # as the default behavior is changed to allow special tokens in
35
+ # regular texts, the surface forms of special tokens need to be
36
+ # as different as possible to minimize the impact
37
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
38
+ SPECIAL_TOKENS = (
39
+ ENDOFTEXT,
40
+ IMSTART,
41
+ IMEND,
42
+ ) + EXTRAS
43
+ IMG_TOKEN_SPAN = 256
44
+
45
+
46
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
47
+ with open(tiktoken_bpe_file, "rb") as f:
48
+ contents = f.read()
49
+ return {
50
+ base64.b64decode(token): int(rank)
51
+ for token, rank in (line.split() for line in contents.splitlines() if line)
52
+ }
53
+
54
+ def _list_find(
55
+ input_list: List[Any],
56
+ candidates: Tuple[Any],
57
+ start: int = 0,
58
+ ):
59
+ for i in range(start, len(input_list)):
60
+ if input_list[i] in candidates:
61
+ return i
62
+ return -1
63
+
64
+ def _replace_closed_tag(
65
+ input_tokens: List[Any],
66
+ start_tags: Union[Any, Tuple[Any]],
67
+ end_tags: Union[Any, Tuple[Any]],
68
+ inclusive_replace_func: Callable,
69
+ exclusive_replace_func: Callable = lambda x: x,
70
+ ):
71
+ if isinstance(start_tags, (str, int)):
72
+ start_tags = (start_tags,)
73
+ if isinstance(end_tags, (str, int)):
74
+ end_tags = (end_tags,)
75
+ assert len(start_tags) == len(end_tags)
76
+
77
+ output_tokens = []
78
+ end = 0
79
+ while True:
80
+ start = _list_find(input_tokens, start_tags, end)
81
+ if start == -1:
82
+ break
83
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
84
+ tag_idx = start_tags.index(input_tokens[start])
85
+ end = _list_find(input_tokens, (end_tags[tag_idx],), start)
86
+ if end == -1:
87
+ raise ValueError("Unclosed image token")
88
+ output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
89
+ end += 1
90
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
91
+ return output_tokens
92
+
93
+ class QWenTokenizer(PreTrainedTokenizer):
94
+ """QWen tokenizer."""
95
+
96
+ vocab_files_names = VOCAB_FILES_NAMES
97
+
98
+ def __init__(
99
+ self,
100
+ vocab_file,
101
+ errors="replace",
102
+ image_start_tag='<img>',
103
+ image_end_tag='</img>',
104
+ image_pad_tag='<imgpad>',
105
+ ref_start_tag='<ref>',
106
+ ref_end_tag='</ref>',
107
+ box_start_tag='<box>',
108
+ box_end_tag='</box>',
109
+ quad_start_tag='<quad>',
110
+ quad_end_tag='</quad>',
111
+ **kwargs,
112
+ ):
113
+ super().__init__(**kwargs)
114
+ self.image_start_tag = image_start_tag
115
+ self.image_end_tag = image_end_tag
116
+ self.image_pad_tag = image_pad_tag
117
+ self.ref_start_tag = ref_start_tag
118
+ self.ref_end_tag = ref_end_tag
119
+ self.box_start_tag = box_start_tag
120
+ self.box_end_tag = box_end_tag
121
+ self.quad_start_tag = quad_start_tag
122
+ self.quad_end_tag = quad_end_tag
123
+ self.IMAGE_ST = (
124
+ ref_start_tag, ref_end_tag,
125
+ box_start_tag, box_end_tag,
126
+ quad_start_tag, quad_end_tag,
127
+ image_start_tag, image_end_tag,
128
+ image_pad_tag
129
+ )
130
+
131
+ self.errors = errors # how to handle errors in decoding
132
+
133
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
134
+ self.special_tokens = {
135
+ token: index
136
+ for index, token in enumerate(
137
+ SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
138
+ )
139
+ }
140
+ self.img_start_id = self.special_tokens[self.image_start_tag]
141
+ self.img_end_id = self.special_tokens[self.image_end_tag]
142
+ self.img_pad_id = self.special_tokens[self.image_pad_tag]
143
+ self.ref_start_id = self.special_tokens[self.ref_start_tag]
144
+ self.ref_end_id = self.special_tokens[self.ref_end_tag]
145
+ self.box_start_id = self.special_tokens[self.box_start_tag]
146
+ self.box_end_id = self.special_tokens[self.box_end_tag]
147
+ self.quad_start_id = self.special_tokens[self.quad_start_tag]
148
+ self.quad_end_id = self.special_tokens[self.quad_end_tag]
149
+
150
+ enc = tiktoken.Encoding(
151
+ "Qwen",
152
+ pat_str=PAT_STR,
153
+ mergeable_ranks=self.mergeable_ranks,
154
+ special_tokens=self.special_tokens,
155
+ )
156
+ assert (
157
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
158
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
159
+
160
+ self.decoder = {
161
+ v: k for k, v in self.mergeable_ranks.items()
162
+ } # type: dict[int, bytes|str]
163
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
164
+
165
+ self.tokenizer = enc # type: tiktoken.Encoding
166
+
167
+ self.eod_id = self.tokenizer.eot_token
168
+ self.im_start_id = self.special_tokens[IMSTART]
169
+ self.im_end_id = self.special_tokens[IMEND]
170
+
171
+ def __len__(self) -> int:
172
+ return self.tokenizer.n_vocab
173
+
174
+ def get_vocab(self) -> Dict[bytes, int]:
175
+ return self.mergeable_ranks
176
+
177
+ def convert_tokens_to_ids(
178
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
179
+ ) -> List[int]:
180
+ ids = []
181
+ if isinstance(tokens, (str, bytes)):
182
+ if tokens in self.special_tokens:
183
+ return self.special_tokens[tokens]
184
+ else:
185
+ return self.mergeable_ranks.get(tokens)
186
+ for token in tokens:
187
+ if token in self.special_tokens:
188
+ ids.append(self.special_tokens[token])
189
+ else:
190
+ ids.append(self.mergeable_ranks.get(token))
191
+ return ids
192
+
193
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
194
+ if not special_tokens and new_tokens:
195
+ raise ValueError('Adding regular tokens is not supported')
196
+ for token in new_tokens:
197
+ surface_form = token.content if isinstance(token, AddedToken) else token
198
+ if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
199
+ raise ValueError('Adding unknown special tokens is not supported')
200
+ return 0
201
+
202
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
203
+ """
204
+ Save only the vocabulary of the tokenizer (vocabulary).
205
+
206
+ Returns:
207
+ `Tuple(str)`: Paths to the files saved.
208
+ """
209
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
210
+ with open(file_path, "w", encoding="utf8") as w:
211
+ for k, v in self.mergeable_ranks.items():
212
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
213
+ w.write(line)
214
+ return (file_path,)
215
+
216
+ def tokenize(
217
+ self,
218
+ text: str,
219
+ allowed_special: Union[Set, str] = "all",
220
+ disallowed_special: Union[Collection, str] = (),
221
+ **kwargs,
222
+ ) -> List[Union[bytes, str]]:
223
+ """
224
+ Converts a string in a sequence of tokens.
225
+
226
+ Args:
227
+ text (`str`):
228
+ The sequence to be encoded.
229
+ allowed_special (`Literal["all"]` or `set`):
230
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
231
+ Default to "all".
232
+ disallowed_special (`Literal["all"]` or `Collection`):
233
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
234
+ Default to an empty tuple.
235
+
236
+ kwargs (additional keyword arguments, *optional*):
237
+ Will be passed to the underlying model specific encode method.
238
+
239
+ Returns:
240
+ `List[bytes|str]`: The list of tokens.
241
+ """
242
+ tokens = []
243
+ text = unicodedata.normalize("NFC", text)
244
+
245
+ # this implementation takes a detour: text -> token id -> token surface forms
246
+ for t in self.tokenizer.encode(
247
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
248
+ ):
249
+ tokens.append(self.decoder[t])
250
+
251
+ def _encode_imgurl(img_tokens):
252
+ assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
253
+ img_tokens = img_tokens[1:-1]
254
+ img_url = b''.join(img_tokens)
255
+ out_img_tokens = list(map(self.decoder.get, img_url))
256
+ if len(out_img_tokens) > IMG_TOKEN_SPAN:
257
+ raise ValueError("The content in {}..{} is too long".format(
258
+ self.image_start_tag, self.image_end_tag))
259
+ out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
260
+ out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
261
+ return out_img_tokens
262
+
263
+ return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
264
+
265
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
266
+ """
267
+ Converts a sequence of tokens in a single string.
268
+ """
269
+ text = ""
270
+ temp = b""
271
+ for t in tokens:
272
+ if isinstance(t, str):
273
+ if temp:
274
+ text += temp.decode("utf-8", errors=self.errors)
275
+ temp = b""
276
+ text += t
277
+ elif isinstance(t, bytes):
278
+ temp += t
279
+ else:
280
+ raise TypeError("token should only be of type types or str")
281
+ if temp:
282
+ text += temp.decode("utf-8", errors=self.errors)
283
+ return text
284
+
285
+ @property
286
+ def vocab_size(self):
287
+ return self.tokenizer.n_vocab
288
+
289
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
290
+ """Converts an id to a token, special tokens included"""
291
+ if index in self.decoder:
292
+ return self.decoder[index]
293
+ raise ValueError("unknown ids")
294
+
295
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
296
+ """Converts a token to an id using the vocab, special tokens included"""
297
+ if token in self.special_tokens:
298
+ return self.special_tokens[token]
299
+ if token in self.mergeable_ranks:
300
+ return self.mergeable_ranks[token]
301
+ raise ValueError("unknown token")
302
+
303
+ def _tokenize(self, text: str, **kwargs):
304
+ """
305
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
306
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
307
+
308
+ Do NOT take care of added tokens.
309
+ """
310
+ raise NotImplementedError
311
+
312
+ def _decode(
313
+ self,
314
+ token_ids: Union[int, List[int]],
315
+ skip_special_tokens: bool = False,
316
+ errors: str = None,
317
+ **kwargs,
318
+ ) -> str:
319
+ if isinstance(token_ids, int):
320
+ token_ids = [token_ids]
321
+
322
+ def _decode_imgurl(img_token_ids):
323
+ assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
324
+ img_token_ids = img_token_ids[1:-1]
325
+ img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
326
+ img_url = bytes(img_token_ids).decode('utf-8')
327
+ return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
328
+
329
+ token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
330
+
331
+ if skip_special_tokens:
332
+ token_ids = [i for i in token_ids if i < self.eod_id]
333
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
334
+
335
+ def to_list_format(self, text: str):
336
+ text = unicodedata.normalize("NFC", text)
337
+ token_ids = self.tokenizer.encode(
338
+ text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
339
+
340
+ def _encode_vl_info(tokens):
341
+ if len(tokens) == 0:
342
+ return []
343
+ if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
344
+ key = 'image'
345
+ elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
346
+ key = 'ref'
347
+ elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
348
+ key = 'box'
349
+ elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
350
+ key = 'quad'
351
+ else:
352
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
353
+ return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
354
+ val = b''.join(map(self.decoder.get, tokens[1:-1])).decode('utf-8')
355
+ return [{key: val}]
356
+
357
+ return _replace_closed_tag(
358
+ token_ids,
359
+ (self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
360
+ (self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
361
+ _encode_vl_info,
362
+ _encode_vl_info,
363
+ )
364
+
365
+ def from_list_format(self, list_format: List[Dict]):
366
+ text = ''
367
+ num_images = 0
368
+ for ele in list_format:
369
+ if 'image' in ele:
370
+ num_images += 1
371
+ text += f'Picture {num_images}:'
372
+ text += self.image_start_tag + ele['image'] + self.image_end_tag
373
+ text += '\n'
374
+ elif 'text' in ele:
375
+ text += ele['text']
376
+ elif 'box' in ele:
377
+ if 'ref' in ele:
378
+ text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
379
+ for box in ele['box']:
380
+ text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
381
+ else:
382
+ raise ValueError("Unsupport element: " + str(ele))
383
+ return text
384
+
385
+ def _fetch_latest_picture(self, response, history):
386
+ if history is None:
387
+ history = []
388
+ _history = history + [(response, None)]
389
+ for q, r in _history[::-1]:
390
+ for ele in self.to_list_format(q)[::-1]:
391
+ if 'image' in ele:
392
+ return ele['image']
393
+ return None
394
+
395
+ def _fetch_all_box_with_ref(self, text):
396
+ list_format = self.to_list_format(text)
397
+ output = []
398
+ for i, ele in enumerate(list_format):
399
+ if 'box' in ele:
400
+ bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
401
+ assert len(bbox) == 4
402
+ output.append({'box': bbox})
403
+ if i > 0 and 'ref' in list_format[i-1]:
404
+ output[-1]['ref'] = list_format[i-1]['ref'].strip()
405
+ return output
406
+
407
+ def draw_bbox_on_latest_picture(
408
+ self,
409
+ response,
410
+ history=None,
411
+ ) -> Optional[Image.Image]:
412
+ image = self._fetch_latest_picture(response, history)
413
+ if image is None:
414
+ return None
415
+ if image.startswith("http://") or image.startswith("https://"):
416
+ image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
417
+ h, w = image.height, image.width
418
+ else:
419
+ image = plt.imread(image)
420
+ h, w = image.shape[0], image.shape[1]
421
+ visualizer = Visualizer(image)
422
+
423
+ boxes = self._fetch_all_box_with_ref(response)
424
+ if not boxes:
425
+ return None
426
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
427
+ for box in boxes:
428
+ if 'ref' in box: # random new color for new refexps
429
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
430
+ x1, y1, x2, y2 = box['box']
431
+ x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
432
+ visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
433
+ if 'ref' in box:
434
+ visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
435
+ return visualizer.output
436
+
437
+
438
+ import colorsys
439
+ import logging
440
+ import math
441
+ import random
442
+
443
+ import matplotlib as mpl
444
+ import matplotlib.colors as mplc
445
+ import matplotlib.figure as mplfigure
446
+ import numpy as np
447
+ import torch
448
+ from matplotlib.backends.backend_agg import FigureCanvasAgg
449
+ from PIL import Image
450
+
451
+ logger = logging.getLogger(__name__)
452
+
453
+
454
+ class VisImage:
455
+ def __init__(self, img, scale=1.0):
456
+ self.img = img
457
+ self.scale = scale
458
+ self.width, self.height = img.shape[1], img.shape[0]
459
+ self._setup_figure(img)
460
+
461
+ def _setup_figure(self, img):
462
+ fig = mplfigure.Figure(frameon=False)
463
+ self.dpi = fig.get_dpi()
464
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
465
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
466
+ fig.set_size_inches(
467
+ (self.width * self.scale + 1e-2) / self.dpi,
468
+ (self.height * self.scale + 1e-2) / self.dpi,
469
+ )
470
+ self.canvas = FigureCanvasAgg(fig)
471
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
472
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
473
+ ax.axis("off")
474
+ self.fig = fig
475
+ self.ax = ax
476
+ self.reset_image(img)
477
+
478
+ def reset_image(self, img):
479
+ img = img.astype("uint8")
480
+ self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
481
+
482
+ def save(self, filepath):
483
+ self.fig.savefig(filepath)
484
+
485
+ def get_image(self):
486
+ canvas = self.canvas
487
+ s, (width, height) = canvas.print_to_buffer()
488
+
489
+ buffer = np.frombuffer(s, dtype="uint8")
490
+
491
+ img_rgba = buffer.reshape(height, width, 4)
492
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
493
+ return rgb.astype("uint8")
494
+
495
+
496
+ class Visualizer:
497
+ def __init__(self, img_rgb, metadata=None, scale=1.0):
498
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
499
+ self.font_path = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
500
+ self.output = VisImage(self.img, scale=scale)
501
+ self.cpu_device = torch.device("cpu")
502
+
503
+ # too small texts are useless, therefore clamp to 14
504
+ self._default_font_size = max(
505
+ np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
506
+ )
507
+
508
+ def draw_text(
509
+ self,
510
+ text,
511
+ position,
512
+ *,
513
+ font_size=None,
514
+ color="g",
515
+ horizontal_alignment="center",
516
+ rotation=0,
517
+ ):
518
+ if not font_size:
519
+ font_size = self._default_font_size
520
+
521
+ # since the text background is dark, we don't want the text to be dark
522
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
523
+ color[np.argmax(color)] = max(0.8, np.max(color))
524
+
525
+ x, y = position
526
+ self.output.ax.text(
527
+ x,
528
+ y,
529
+ text,
530
+ size=font_size * self.output.scale,
531
+ fontproperties=FontProperties(fname=self.font_path),
532
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
533
+ verticalalignment="top",
534
+ horizontalalignment=horizontal_alignment,
535
+ color=color,
536
+ zorder=10,
537
+ rotation=rotation,
538
+ )
539
+ return self.output
540
+
541
+ def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
542
+
543
+ x0, y0, x1, y1 = box_coord
544
+ width = x1 - x0
545
+ height = y1 - y0
546
+
547
+ linewidth = max(self._default_font_size / 4, 1)
548
+
549
+ self.output.ax.add_patch(
550
+ mpl.patches.Rectangle(
551
+ (x0, y0),
552
+ width,
553
+ height,
554
+ fill=False,
555
+ edgecolor=edge_color,
556
+ linewidth=linewidth * self.output.scale,
557
+ alpha=alpha,
558
+ linestyle=line_style,
559
+ )
560
+ )
561
+ return self.output
562
+
563
+ def get_output(self):
564
+
565
+ return self.output
tokenizer_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_qwen.QWenTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "clean_up_tokenization_spaces": true,
9
+ "model_max_length": 8192,
10
+ "tokenizer_class": "QWenTokenizer"
11
+ }
visual.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import math
7
+ from collections import OrderedDict
8
+ from functools import partial
9
+ from io import BytesIO
10
+ from typing import Callable, List, Optional, Sequence, Tuple
11
+
12
+ import numpy as np
13
+ import requests
14
+ import torch
15
+ from PIL import Image
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.init import trunc_normal_
19
+ from torchvision import transforms
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+
23
+ def get_abs_pos(abs_pos, tgt_size):
24
+ # abs_pos: L, C
25
+ # tgt_size: M
26
+ # return: M, C
27
+ src_size = int(math.sqrt(abs_pos.size(0)))
28
+ tgt_size = int(math.sqrt(tgt_size))
29
+ dtype = abs_pos.dtype
30
+
31
+ if src_size != tgt_size:
32
+ return F.interpolate(
33
+ abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
34
+ size=(tgt_size, tgt_size),
35
+ mode="bicubic",
36
+ align_corners=False,
37
+ ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
38
+ else:
39
+ return abs_pos
40
+
41
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
42
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
43
+ """
44
+ grid_size: int of the grid height and width
45
+ return:
46
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
47
+ """
48
+ grid_h = np.arange(grid_size, dtype=np.float32)
49
+ grid_w = np.arange(grid_size, dtype=np.float32)
50
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
51
+ grid = np.stack(grid, axis=0)
52
+
53
+ grid = grid.reshape([2, 1, grid_size, grid_size])
54
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
55
+ if cls_token:
56
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
57
+ return pos_embed
58
+
59
+
60
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
61
+ assert embed_dim % 2 == 0
62
+
63
+ # use half of dimensions to encode grid_h
64
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
65
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
66
+
67
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
68
+ return emb
69
+
70
+
71
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
72
+ """
73
+ embed_dim: output dimension for each position
74
+ pos: a list of positions to be encoded: size (M,)
75
+ out: (M, D)
76
+ """
77
+ assert embed_dim % 2 == 0
78
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
79
+ omega /= embed_dim / 2.
80
+ omega = 1. / 10000**omega # (D/2,)
81
+
82
+ pos = pos.reshape(-1) # (M,)
83
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
84
+
85
+ emb_sin = np.sin(out) # (M, D/2)
86
+ emb_cos = np.cos(out) # (M, D/2)
87
+
88
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
89
+ return emb
90
+
91
+
92
+ class Resampler(nn.Module):
93
+ """
94
+ A 2D perceiver-resampler network with one cross attention layers by
95
+ (grid_size**2) learnable queries and 2d sincos pos_emb
96
+ Outputs:
97
+ A tensor with the shape of (grid_size**2, embed_dim)
98
+ """
99
+ def __init__(
100
+ self,
101
+ grid_size,
102
+ embed_dim,
103
+ num_heads,
104
+ kv_dim=None,
105
+ norm_layer=nn.LayerNorm
106
+ ):
107
+ super().__init__()
108
+ self.num_queries = grid_size ** 2
109
+ self.embed_dim = embed_dim
110
+ self.num_heads = num_heads
111
+
112
+ self.pos_embed = nn.Parameter(
113
+ torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
114
+ ).requires_grad_(False)
115
+
116
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
117
+ trunc_normal_(self.query, std=.02)
118
+
119
+ if kv_dim is not None and kv_dim != embed_dim:
120
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
121
+ else:
122
+ self.kv_proj = nn.Identity()
123
+
124
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
125
+ self.ln_q = norm_layer(embed_dim)
126
+ self.ln_kv = norm_layer(embed_dim)
127
+
128
+ self.apply(self._init_weights)
129
+
130
+ def _init_weights(self, m):
131
+ if isinstance(m, nn.Linear):
132
+ trunc_normal_(m.weight, std=.02)
133
+ if isinstance(m, nn.Linear) and m.bias is not None:
134
+ nn.init.constant_(m.bias, 0)
135
+ elif isinstance(m, nn.LayerNorm):
136
+ nn.init.constant_(m.bias, 0)
137
+ nn.init.constant_(m.weight, 1.0)
138
+
139
+ def forward(self, x, attn_mask=None):
140
+
141
+ pos_embed = get_abs_pos(self.pos_embed, x.size(1))
142
+
143
+ x = self.kv_proj(x)
144
+ x = self.ln_kv(x).permute(1, 0, 2)
145
+
146
+ N = x.shape[1]
147
+ q = self.ln_q(self.query)
148
+ out = self.attn(
149
+ self._repeat(q, N) + self.pos_embed.unsqueeze(1),
150
+ x + pos_embed.unsqueeze(1),
151
+ x,
152
+ attn_mask=attn_mask)[0]
153
+ return out.permute(1, 0, 2)
154
+
155
+ def _repeat(self, query, N: int):
156
+ return query.unsqueeze(1).repeat(1, N, 1)
157
+
158
+
159
+ class VisualAttention(nn.Module):
160
+ """self-attention layer class.
161
+
162
+ Self-attention layer takes input with size [s, b, h]
163
+ and returns output of the same size.
164
+ """
165
+
166
+ def __init__(self, embed_dim, num_heads,
167
+ bias=True, kdim=None, vdim=None):
168
+ super(VisualAttention, self).__init__()
169
+ self.embed_dim = embed_dim
170
+ self.kdim = kdim if kdim is not None else embed_dim
171
+ self.vdim = vdim if vdim is not None else embed_dim
172
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
173
+
174
+ self.num_heads = num_heads
175
+
176
+ # Per attention head and per partition values.
177
+ assert embed_dim % num_heads == 0
178
+ self.hidden_size_per_attention_head = embed_dim // num_heads
179
+ self.num_attention_heads_per_partition = num_heads
180
+ self.hidden_size_per_partition = embed_dim
181
+
182
+ # Strided linear layer.
183
+ assert self._qkv_same_embed_dim, 'Only Support SelfAttention Currently'
184
+ self.in_proj = nn.Linear(embed_dim, 3 * embed_dim)
185
+ self.out_proj = nn.Linear(embed_dim, embed_dim)
186
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
187
+
188
+ def forward(self, query, key, value, attn_mask = None):
189
+ # query/key/value: [sq, b, h]
190
+ sq, b, _ = query.size()
191
+
192
+ assert query is key, 'Only Support Self-Attention Currently'
193
+ sk = sq
194
+ mixed_x_layer = self.in_proj(query)
195
+
196
+ # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
197
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
198
+ (self.num_attention_heads_per_partition,
199
+ 3 * self.hidden_size_per_attention_head)
200
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
201
+
202
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
203
+ query_layer, key_layer, value_layer = mixed_x_layer.split(
204
+ self.hidden_size_per_attention_head, dim=-1)
205
+
206
+ # [sq, b, np, hn] -> [sq, b * np, hn]
207
+ query_layer = query_layer.view(sq,
208
+ b * self.num_attention_heads_per_partition,
209
+ self.hidden_size_per_attention_head).transpose(0, 1)
210
+ # [sk, b, np, hn] -> [sk, b * np, hn]
211
+ key_layer = key_layer.view(sk,
212
+ b * self.num_attention_heads_per_partition,
213
+ self.hidden_size_per_attention_head).transpose(0, 1)
214
+
215
+ q_scaled = query_layer / self.norm_factor
216
+ if attn_mask is not None:
217
+ attention_probs = torch.baddbmm(attn_mask, q_scaled, key_layer.transpose(-2, -1))
218
+ else:
219
+ attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
220
+ attention_probs = attention_probs.softmax(dim=-1)
221
+
222
+ value_layer = value_layer.view(sk,
223
+ b * self.num_attention_heads_per_partition,
224
+ self.hidden_size_per_attention_head).transpose(0, 1)
225
+
226
+ # matmul: [b * np, sq, hn]
227
+ context_layer = torch.bmm(attention_probs, value_layer)
228
+
229
+ # change view [b, np, sq, hn]
230
+ context_layer = context_layer.view(b,
231
+ self.num_attention_heads_per_partition,
232
+ sq, self.hidden_size_per_attention_head)
233
+
234
+ # [b, np, sq, hn] --> [sq, b, np, hn]
235
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
236
+
237
+ # [sq, b, np, hn] --> [sq, b, hp]
238
+ new_context_layer_shape = context_layer.size()[:-2] + \
239
+ (self.hidden_size_per_partition,)
240
+ context_layer = context_layer.view(*new_context_layer_shape)
241
+
242
+ output = self.out_proj(context_layer)
243
+
244
+ return output
245
+
246
+
247
+ class VisualAttentionBlock(nn.Module):
248
+ def __init__(
249
+ self,
250
+ d_model: int,
251
+ n_head: int,
252
+ mlp_ratio: float = 4.0,
253
+ act_layer: Callable = nn.GELU,
254
+ norm_layer: Callable = nn.LayerNorm,
255
+ is_cross_attention: bool = False,
256
+ ):
257
+ super().__init__()
258
+
259
+ self.ln_1 = norm_layer(d_model)
260
+ if is_cross_attention:
261
+ self.ln_1_kv = norm_layer(d_model)
262
+
263
+ self.ln_2 = norm_layer(d_model)
264
+ mlp_width = int(d_model * mlp_ratio)
265
+ self.attn = VisualAttention(d_model, n_head)
266
+ self.mlp = nn.Sequential(OrderedDict([
267
+ ("c_fc", nn.Linear(d_model, mlp_width)),
268
+ ("gelu", act_layer()),
269
+ ("c_proj", nn.Linear(mlp_width, d_model))
270
+ ]))
271
+
272
+ def attention(
273
+ self,
274
+ q_x: torch.Tensor,
275
+ k_x: Optional[torch.Tensor] = None,
276
+ v_x: Optional[torch.Tensor] = None,
277
+ attn_mask: Optional[torch.Tensor] = None,
278
+ ):
279
+ k_x = k_x if k_x is not None else q_x
280
+ v_x = v_x if v_x is not None else q_x
281
+
282
+ attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
283
+ return self.attn(q_x, k_x, v_x, attn_mask=attn_mask)
284
+
285
+ def forward(
286
+ self,
287
+ q_x: torch.Tensor,
288
+ k_x: Optional[torch.Tensor] = None,
289
+ v_x: Optional[torch.Tensor] = None,
290
+ attn_mask: Optional[torch.Tensor] = None,
291
+ ):
292
+ k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
293
+ v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
294
+
295
+ x = q_x + self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
296
+ x = x + self.mlp(self.ln_2(x))
297
+ return x
298
+
299
+
300
+ class TransformerBlock(nn.Module):
301
+ def __init__(
302
+ self,
303
+ width: int,
304
+ layers: int,
305
+ heads: int,
306
+ mlp_ratio: float = 4.0,
307
+ act_layer: Callable = nn.GELU,
308
+ norm_layer: Callable = nn.LayerNorm,
309
+ ):
310
+ super().__init__()
311
+ self.width = width
312
+ self.layers = layers
313
+
314
+ self.resblocks = nn.ModuleList([
315
+ VisualAttentionBlock(
316
+ width, heads, mlp_ratio, act_layer=act_layer, norm_layer=norm_layer)
317
+ for _ in range(layers)
318
+ ])
319
+
320
+ def get_cast_dtype(self) -> torch.dtype:
321
+ return self.resblocks[0].mlp.c_fc.weight.dtype
322
+
323
+ def get_cast_device(self) -> torch.device:
324
+ return self.resblocks[0].mlp.c_fc.weight.device
325
+
326
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
327
+ for r in self.resblocks:
328
+ x = r(x, attn_mask=attn_mask)
329
+ return x
330
+
331
+
332
+ class VisionTransformer(nn.Module):
333
+
334
+ def __init__(
335
+ self,
336
+ image_size: int,
337
+ patch_size: int,
338
+ width: int,
339
+ layers: int,
340
+ heads: int,
341
+ mlp_ratio: float,
342
+ n_queries: int = 256,
343
+ output_dim: int = 512,
344
+ **kwargs
345
+ ):
346
+ super().__init__()
347
+ image_height, image_width = self.image_size = (image_size, image_size)
348
+ patch_height, patch_width = self.patch_size = (patch_size, patch_size)
349
+ self.grid_size = (image_height // patch_height, image_width // patch_width)
350
+ self.output_dim = output_dim
351
+
352
+ mean = (0.48145466, 0.4578275, 0.40821073)
353
+ std = (0.26862954, 0.26130258, 0.27577711)
354
+ self.image_transform = transforms.Compose([
355
+ transforms.Resize(
356
+ (image_size, image_size),
357
+ interpolation=InterpolationMode.BICUBIC
358
+ ),
359
+ transforms.ToTensor(),
360
+ transforms.Normalize(mean=mean, std=std),
361
+ ])
362
+
363
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
364
+
365
+ # class embeddings and positional embeddings
366
+ scale = width ** -0.5
367
+ self.positional_embedding = nn.Parameter(scale * torch.randn(256, width))
368
+
369
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
370
+ act_layer = nn.GELU
371
+
372
+ self.ln_pre = norm_layer(width)
373
+ self.transformer = TransformerBlock(
374
+ width,
375
+ layers,
376
+ heads,
377
+ mlp_ratio,
378
+ act_layer=act_layer,
379
+ norm_layer=norm_layer,
380
+ )
381
+
382
+ self.attn_pool = Resampler(
383
+ grid_size=int(math.sqrt(n_queries)),
384
+ embed_dim=output_dim,
385
+ num_heads=output_dim // 128,
386
+ kv_dim=width,
387
+ norm_layer=norm_layer,
388
+ )
389
+ self.ln_post = norm_layer(output_dim)
390
+ self.proj = nn.Parameter((output_dim** -0.5) * torch.randn(output_dim, output_dim))
391
+
392
+ def forward(self, x: torch.Tensor):
393
+ x = x.to(
394
+ dtype=self.conv1.weight.dtype,
395
+ device=self.conv1.weight.device,
396
+ )
397
+ # to patches
398
+ x = self.conv1(x) # shape = [*, width, grid, grid]
399
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
400
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
401
+
402
+ x = x + get_abs_pos(self.positional_embedding, x.size(1))
403
+
404
+ x = self.ln_pre(x)
405
+
406
+ x = x.permute(1, 0, 2) # NLD -> LND
407
+ x = self.transformer(x)
408
+ x = x.permute(1, 0, 2) # LND -> NLD
409
+
410
+ x = self.attn_pool(x)
411
+ x = self.ln_post(x)
412
+ x = x @ self.proj
413
+
414
+ return x
415
+
416
+ def encode(self, image_paths: List[str]):
417
+ images = []
418
+ for image_path in image_paths:
419
+ if image_path.startswith("http://") or image_path.startswith("https://"):
420
+ image = Image.open(requests.get(image_path, stream=True).raw)
421
+ else:
422
+ image = Image.open(image_path)
423
+ image = image.convert("RGB")
424
+ images.append(self.image_transform(image))
425
+ images = torch.stack(images, dim=0)
426
+ return self(images)