File size: 1,671 Bytes
7edf7c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: other
language:
- en
base_model:
- black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
tags:
- diffusers
- controlnet
- Flux
- image-generation
---
# Description
This repository provides a Diffusers version of FLUX.1-dev Canny ControlNet checkpoint by Xlabs AI, [original repo](https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3).
![Example Picture 1](canny_result.png?raw=true)
# How to use
This model can be used directly with the diffusers library
```
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
import numpy as np
generator = torch.Generator(device="cuda").manual_seed(87544357)
controlnet = FluxControlNetModel.from_pretrained(
"Xlabs-AI/flux-controlnet-canny-diffusers",
torch_dtype=torch.bfloat16,
use_safetensors=True,
)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
control_image = load_image("https://huggingface.co/Xlabs-AI/flux-controlnet-hed-diffusers/resolve/main/canny_example.png")
prompt = "handsome girl with rainbow hair, anime"
image = pipe(
prompt,
control_image=control_image,
controlnet_conditioning_scale=0.7,
num_inference_steps=25,
guidance_scale=3.5,
height=1024,
width=768,
generator=generator,
num_images_per_prompt=1,
).images[0]
image.save("output_test_controlnet.png")
```
## License
Our weights fall under the [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License<br/> |