Update to Transformers.js v3.4 (#6)
Browse files- Update to Transformers.js v3.4 (39f64d67c373c7f25e31e37a09f7c4981701925a)
- Update config.json (9391f08d7c0e4c74b97c8bb9e310599237664cdc)
- README.md +4 -4
- config.json +5 -0
README.md
CHANGED
|
@@ -7,15 +7,15 @@ https://huggingface.co/BAAI/bge-m3 with ONNX weights to be compatible with Trans
|
|
| 7 |
|
| 8 |
## Usage (Transformers.js)
|
| 9 |
|
| 10 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
| 11 |
```bash
|
| 12 |
-
npm i @
|
| 13 |
```
|
| 14 |
|
| 15 |
You can then use the model to compute embeddings, as follows:
|
| 16 |
|
| 17 |
```js
|
| 18 |
-
import { pipeline } from '@
|
| 19 |
|
| 20 |
// Create a feature-extraction pipeline
|
| 21 |
const extractor = await pipeline('feature-extraction', 'Xenova/bge-m3');
|
|
@@ -40,7 +40,7 @@ console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list
|
|
| 40 |
|
| 41 |
You can also use the model for retrieval. For example:
|
| 42 |
```js
|
| 43 |
-
import { pipeline, cos_sim } from '@
|
| 44 |
|
| 45 |
// Create a feature-extraction pipeline
|
| 46 |
const extractor = await pipeline('feature-extraction', 'Xenova/bge-m3');
|
|
|
|
| 7 |
|
| 8 |
## Usage (Transformers.js)
|
| 9 |
|
| 10 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 11 |
```bash
|
| 12 |
+
npm i @huggingface/transformers
|
| 13 |
```
|
| 14 |
|
| 15 |
You can then use the model to compute embeddings, as follows:
|
| 16 |
|
| 17 |
```js
|
| 18 |
+
import { pipeline } from '@huggingface/transformers';
|
| 19 |
|
| 20 |
// Create a feature-extraction pipeline
|
| 21 |
const extractor = await pipeline('feature-extraction', 'Xenova/bge-m3');
|
|
|
|
| 40 |
|
| 41 |
You can also use the model for retrieval. For example:
|
| 42 |
```js
|
| 43 |
+
import { pipeline, cos_sim } from '@huggingface/transformers';
|
| 44 |
|
| 45 |
// Create a feature-extraction pipeline
|
| 46 |
const extractor = await pipeline('feature-extraction', 'Xenova/bge-m3');
|
config.json
CHANGED
|
@@ -21,6 +21,11 @@
|
|
| 21 |
"pad_token_id": 1,
|
| 22 |
"position_embedding_type": "absolute",
|
| 23 |
"transformers_version": "4.37.2",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"type_vocab_size": 1,
|
| 25 |
"use_cache": true,
|
| 26 |
"vocab_size": 250002
|
|
|
|
| 21 |
"pad_token_id": 1,
|
| 22 |
"position_embedding_type": "absolute",
|
| 23 |
"transformers_version": "4.37.2",
|
| 24 |
+
"transformers.js_config": {
|
| 25 |
+
"use_external_data_format": {
|
| 26 |
+
"model.onnx": true,
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
"type_vocab_size": 1,
|
| 30 |
"use_cache": true,
|
| 31 |
"vocab_size": 250002
|