--- base_model: distilbert-base-uncased-finetuned-sst-2-english library_name: transformers.js --- https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` You can then use the model to classify text like this: ```js import { pipeline } from "@xenova/transformers"; // Create a sentiment analysis pipeline const classifier = await pipeline('sentiment-analysis', 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'); // Classify input text const output = await classifier('I love transformers!'); console.log(output); // [{ label: 'POSITIVE', score: 0.999788761138916 }] // Classify input text (and return all classes) const output2 = await classifier('I love transformers!', { topk: null }); console.log(output2); // [ // { label: 'POSITIVE', score: 0.999788761138916 }, // { label: 'NEGATIVE', score: 0.00021126774663571268 } // ] ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).