File size: 1,411 Bytes
ba3c97d fdaf312 ba3c97d a4a655b ba3c97d e6277de 37894b8 ba3c97d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
base_model: google/electra-small-discriminator
library_name: transformers.js
pipeline_tag: feature-extraction
---
https://huggingface.co/google/electra-small-discriminator with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Feature extraction w/ `Xenova/electra-small-discriminator`.
```javascript
import { pipeline } from '@xenova/transformers';
// Create feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/electra-small-discriminator');
// Perform feature extraction
const output = await extractor('This is a test sentence.');
console.log(output)
// Tensor {
// dims: [ 1, 8, 256 ],
// type: 'float32',
// data: Float32Array(2048) [ 0.5410046577453613, 0.18386700749397278, ... ],
// size: 2048
// }
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |