--- library_name: transformers.js license: other tags: - mobileclip --- https://github.com/apple/ml-mobileclip with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform zero-shot image classification. ```js import { AutoTokenizer, CLIPTextModelWithProjection, AutoProcessor, CLIPVisionModelWithProjection, RawImage, dot, softmax, } from '@xenova/transformers'; const model_id = 'Xenova/mobileclip_s1'; // Load tokenizer and text model const tokenizer = await AutoTokenizer.from_pretrained(model_id); const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id); // Load processor and vision model const processor = await AutoProcessor.from_pretrained(model_id); const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id, { quantized: false, // NOTE: vision model is sensitive to quantization. }); // Run tokenization const texts = ['cats', 'dogs', 'birds']; const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true }); // Compute text embeddings const { text_embeds } = await text_model(text_inputs); const normalized_text_embeds = text_embeds.normalize().tolist(); // Read image and run processor const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; const image = await RawImage.read(url); const image_inputs = await processor(image); // Compute vision embeddings const { image_embeds } = await vision_model(image_inputs); const normalized_image_embeds = image_embeds.normalize().tolist(); // Compute probabilities const probabilities = normalized_image_embeds.map( x => softmax(normalized_text_embeds.map(y => 100 * dot(x, y))) ); console.log(probabilities); // [[ 0.9999744722905349, 0.0000217474276948055, 0.00000378028177032859 ]] ```