Xenova HF staff commited on
Commit
bc2bf05
·
1 Parent(s): 6260458

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -0
README.md CHANGED
@@ -44,6 +44,8 @@ fs.writeFileSync('result.wav', wav.toBuffer());
44
 
45
  **Example:** Load processor, tokenizer, and models separately.
46
  ```js
 
 
47
  // Load the tokenizer and processor
48
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
49
  const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts');
@@ -76,6 +78,19 @@ console.log(waveform)
76
  // data: Float32Array(26112) [ -0.00043630177970044315, -0.00018082228780258447, ... ],
77
  // }
78
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ---
80
 
81
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
44
 
45
  **Example:** Load processor, tokenizer, and models separately.
46
  ```js
47
+ import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@xenova/transformers';
48
+
49
  // Load the tokenizer and processor
50
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
51
  const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts');
 
78
  // data: Float32Array(26112) [ -0.00043630177970044315, -0.00018082228780258447, ... ],
79
  // }
80
  ```
81
+
82
+ Optionally, save the audio to a wav file (Node.js):
83
+ ```js
84
+ // Write to file (Node.js)
85
+ import wavefile from 'wavefile';
86
+ import fs from 'fs';
87
+
88
+ const wav = new wavefile.WaveFile();
89
+ wav.fromScratch(1, processor.feature_extractor.config.sampling_rate, '32f', waveform.data);
90
+ fs.writeFileSync('out.wav', wav.toBuffer());
91
+ ```
92
+
93
+
94
  ---
95
 
96
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).