Xenova HF staff commited on
Commit
b6a5010
·
verified ·
1 Parent(s): ff7b890

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +188 -1
README.md CHANGED
@@ -3,4 +3,191 @@ library_name: transformers.js
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
+ ---
7
+
8
+ YOLOv8x-pose with ONNX weights to be compatible with Transformers.js.
9
+
10
+ ## Usage (Transformers.js)
11
+
12
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
13
+ ```bash
14
+ npm i @xenova/transformers
15
+ ```
16
+
17
+ **Example:** Perform pose-estimation w/ `Xenova/yolov8x-pose`.
18
+
19
+ ```js
20
+ import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
21
+
22
+ // Load model and processor
23
+ const model_id = 'Xenova/yolov8x-pose';
24
+ const model = await AutoModel.from_pretrained(model_id);
25
+ const processor = await AutoProcessor.from_pretrained(model_id);
26
+
27
+ // Read image and run processor
28
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
29
+ const image = await RawImage.read(url);
30
+ const { pixel_values } = await processor(image);
31
+
32
+ // Set thresholds
33
+ const threshold = 0.3; // Remove detections with low confidence
34
+ const iouThreshold = 0.5; // Used to remove duplicates
35
+ const pointThreshold = 0.3; // Hide uncertain points
36
+
37
+ // Predict bounding boxes and keypoints
38
+ const { output0 } = await model({ images: pixel_values });
39
+
40
+ // Post-process:
41
+ const permuted = output0[0].transpose(1, 0);
42
+ // `permuted` is a Tensor of shape [ 8400, 56 ]:
43
+ // - 8400 potential detections
44
+ // - 56 parameters for each box:
45
+ // - 4 for the bounding box dimensions (x-center, y-center, width, height)
46
+ // - 1 for the confidence score
47
+ // - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)
48
+
49
+ // Example code to format it nicely:
50
+ const results = [];
51
+ const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
52
+ for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
53
+ if (score < threshold) continue;
54
+
55
+ // Get pixel values, taking into account the original image size
56
+ const x1 = (xc - w / 2) / scaledWidth * image.width;
57
+ const y1 = (yc - h / 2) / scaledHeight * image.height;
58
+ const x2 = (xc + w / 2) / scaledWidth * image.width;
59
+ const y2 = (yc + h / 2) / scaledHeight * image.height;
60
+ results.push({ x1, x2, y1, y2, score, keypoints })
61
+ }
62
+
63
+
64
+ // Define helper functions
65
+ function removeDuplicates(detections, iouThreshold) {
66
+ const filteredDetections = [];
67
+
68
+ for (const detection of detections) {
69
+ let isDuplicate = false;
70
+ let duplicateIndex = -1;
71
+ let maxIoU = 0;
72
+
73
+ for (let i = 0; i < filteredDetections.length; ++i) {
74
+ const filteredDetection = filteredDetections[i];
75
+ const iou = calculateIoU(detection, filteredDetection);
76
+ if (iou > iouThreshold) {
77
+ isDuplicate = true;
78
+ if (iou > maxIoU) {
79
+ maxIoU = iou;
80
+ duplicateIndex = i;
81
+ }
82
+ }
83
+ }
84
+
85
+ if (!isDuplicate) {
86
+ filteredDetections.push(detection);
87
+ } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
88
+ filteredDetections[duplicateIndex] = detection;
89
+ }
90
+ }
91
+
92
+ return filteredDetections;
93
+ }
94
+
95
+ function calculateIoU(detection1, detection2) {
96
+ const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
97
+ const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
98
+ const overlapArea = xOverlap * yOverlap;
99
+
100
+ const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
101
+ const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
102
+ const unionArea = area1 + area2 - overlapArea;
103
+
104
+ return overlapArea / unionArea;
105
+ }
106
+
107
+ const filteredResults = removeDuplicates(results, iouThreshold);
108
+
109
+ // Display results
110
+ for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
111
+ console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
112
+ for (let i = 0; i < keypoints.length; i += 3) {
113
+ const label = model.config.id2label[Math.floor(i / 3)];
114
+ const [x, y, point_score] = keypoints.slice(i, i + 3);
115
+ if (point_score < pointThreshold) continue;
116
+ console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
117
+ }
118
+ }
119
+ ```
120
+
121
+ <details>
122
+
123
+ <summary>See example output</summary>
124
+
125
+ ```
126
+ Found person at [535.7708740234375, 45.77457022666931, 644.4645690917969, 312.20427117347714] with score 0.697
127
+ - nose: (441.61, 87.47) with score 0.966
128
+ - left_eye: (449.36, 79.91) with score 0.988
129
+ - right_eye: (436.36, 79.56) with score 0.850
130
+ - left_ear: (462.02, 83.57) with score 0.919
131
+ - left_shoulder: (478.73, 127.16) with score 0.994
132
+ - right_shoulder: (420.37, 126.47) with score 0.703
133
+ - left_elbow: (503.33, 180.38) with score 0.977
134
+ - left_wrist: (506.53, 236.52) with score 0.924
135
+ - left_hip: (470.67, 223.60) with score 0.982
136
+ - right_hip: (432.32, 223.90) with score 0.851
137
+ - left_knee: (470.86, 306.20) with score 0.949
138
+ - right_knee: (428.56, 306.69) with score 0.601
139
+ - left_ankle: (463.92, 383.59) with score 0.737
140
+ Found person at [-0.06377220153808594, 61.59769003391266, 156.24676704406738, 370.5519897222519] with score 0.926
141
+ - nose: (59.61, 100.49) with score 0.979
142
+ - left_eye: (66.44, 96.11) with score 0.954
143
+ - right_eye: (55.82, 96.21) with score 0.908
144
+ - left_ear: (76.90, 98.52) with score 0.819
145
+ - right_ear: (49.82, 102.11) with score 0.571
146
+ - left_shoulder: (87.07, 135.82) with score 0.990
147
+ - right_shoulder: (36.53, 134.96) with score 0.987
148
+ - left_elbow: (102.21, 193.66) with score 0.970
149
+ - right_elbow: (24.85, 187.30) with score 0.947
150
+ - left_wrist: (110.61, 245.75) with score 0.962
151
+ - right_wrist: (6.28, 233.46) with score 0.939
152
+ - left_hip: (82.71, 230.04) with score 0.997
153
+ - right_hip: (48.15, 235.65) with score 0.995
154
+ - left_knee: (95.27, 321.57) with score 0.993
155
+ - right_knee: (52.73, 320.56) with score 0.991
156
+ - left_ankle: (100.90, 415.89) with score 0.948
157
+ - right_ankle: (56.65, 417.09) with score 0.942
158
+ Found person at [109.67742919921875, 12.466975402832032, 501.75636291503906, 533.3693368911744] with score 0.934
159
+ - nose: (126.43, 96.98) with score 0.715
160
+ - left_eye: (126.52, 88.36) with score 0.664
161
+ - left_ear: (136.92, 78.79) with score 0.934
162
+ - left_shoulder: (191.69, 125.31) with score 0.998
163
+ - right_shoulder: (166.08, 138.95) with score 0.993
164
+ - left_elbow: (254.38, 194.23) with score 0.997
165
+ - right_elbow: (186.09, 258.25) with score 0.986
166
+ - left_wrist: (309.75, 260.93) with score 0.990
167
+ - right_wrist: (133.20, 283.14) with score 0.973
168
+ - left_hip: (281.07, 280.72) with score 1.000
169
+ - right_hip: (258.20, 300.47) with score 1.000
170
+ - left_knee: (228.48, 442.67) with score 0.999
171
+ - right_knee: (250.90, 474.40) with score 0.999
172
+ - left_ankle: (343.96, 435.26) with score 0.979
173
+ - right_ankle: (340.41, 601.64) with score 0.971
174
+ Found person at [422.38683700561523, 67.97338972091676, 638.0375099182129, 493.7016093254089] with score 0.932
175
+ - nose: (417.60, 144.74) with score 0.989
176
+ - left_eye: (426.67, 134.88) with score 0.959
177
+ - right_eye: (410.81, 135.93) with score 0.952
178
+ - left_ear: (443.39, 137.08) with score 0.771
179
+ - right_ear: (400.11, 142.05) with score 0.753
180
+ - left_shoulder: (446.92, 202.43) with score 0.997
181
+ - right_shoulder: (374.31, 196.36) with score 0.993
182
+ - left_elbow: (458.77, 287.40) with score 0.990
183
+ - right_elbow: (355.46, 260.60) with score 0.971
184
+ - left_wrist: (488.87, 354.68) with score 0.984
185
+ - right_wrist: (402.03, 263.57) with score 0.978
186
+ - left_hip: (432.69, 349.58) with score 0.998
187
+ - right_hip: (381.51, 366.30) with score 0.996
188
+ - left_knee: (463.97, 447.94) with score 0.991
189
+ - right_knee: (403.90, 511.95) with score 0.978
190
+ - left_ankle: (450.14, 562.29) with score 0.889
191
+ - right_ankle: (436.81, 548.29) with score 0.759
192
+ ```
193
+ </details>