--- library_name: transformers.js tags: - pose-estimation license: agpl-3.0 --- YOLOv8x-pose with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform pose-estimation w/ `Xenova/yolov8x-pose`. ```js import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; // Load model and processor const model_id = 'Xenova/yolov8x-pose'; const model = await AutoModel.from_pretrained(model_id); const processor = await AutoProcessor.from_pretrained(model_id); // Read image and run processor const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; const image = await RawImage.read(url); const { pixel_values } = await processor(image); // Set thresholds const threshold = 0.3; // Remove detections with low confidence const iouThreshold = 0.5; // Used to remove duplicates const pointThreshold = 0.3; // Hide uncertain points // Predict bounding boxes and keypoints const { output0 } = await model({ images: pixel_values }); // Post-process: const permuted = output0[0].transpose(1, 0); // `permuted` is a Tensor of shape [ 8400, 56 ]: // - 8400 potential detections // - 56 parameters for each box: // - 4 for the bounding box dimensions (x-center, y-center, width, height) // - 1 for the confidence score // - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy) // Example code to format it nicely: const results = []; const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2); for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) { if (score < threshold) continue; // Get pixel values, taking into account the original image size const x1 = (xc - w / 2) / scaledWidth * image.width; const y1 = (yc - h / 2) / scaledHeight * image.height; const x2 = (xc + w / 2) / scaledWidth * image.width; const y2 = (yc + h / 2) / scaledHeight * image.height; results.push({ x1, x2, y1, y2, score, keypoints }) } // Define helper functions function removeDuplicates(detections, iouThreshold) { const filteredDetections = []; for (const detection of detections) { let isDuplicate = false; let duplicateIndex = -1; let maxIoU = 0; for (let i = 0; i < filteredDetections.length; ++i) { const filteredDetection = filteredDetections[i]; const iou = calculateIoU(detection, filteredDetection); if (iou > iouThreshold) { isDuplicate = true; if (iou > maxIoU) { maxIoU = iou; duplicateIndex = i; } } } if (!isDuplicate) { filteredDetections.push(detection); } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) { filteredDetections[duplicateIndex] = detection; } } return filteredDetections; } function calculateIoU(detection1, detection2) { const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1)); const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1)); const overlapArea = xOverlap * yOverlap; const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1); const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1); const unionArea = area1 + area2 - overlapArea; return overlapArea / unionArea; } const filteredResults = removeDuplicates(results, iouThreshold); // Display results for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) { console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`) for (let i = 0; i < keypoints.length; i += 3) { const label = model.config.id2label[Math.floor(i / 3)]; const [x, y, point_score] = keypoints.slice(i, i + 3); if (point_score < pointThreshold) continue; console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`); } } ```
See example output ``` Found person at [535.7708740234375, 45.77457022666931, 644.4645690917969, 312.20427117347714] with score 0.697 - nose: (441.61, 87.47) with score 0.966 - left_eye: (449.36, 79.91) with score 0.988 - right_eye: (436.36, 79.56) with score 0.850 - left_ear: (462.02, 83.57) with score 0.919 - left_shoulder: (478.73, 127.16) with score 0.994 - right_shoulder: (420.37, 126.47) with score 0.703 - left_elbow: (503.33, 180.38) with score 0.977 - left_wrist: (506.53, 236.52) with score 0.924 - left_hip: (470.67, 223.60) with score 0.982 - right_hip: (432.32, 223.90) with score 0.851 - left_knee: (470.86, 306.20) with score 0.949 - right_knee: (428.56, 306.69) with score 0.601 - left_ankle: (463.92, 383.59) with score 0.737 Found person at [-0.06377220153808594, 61.59769003391266, 156.24676704406738, 370.5519897222519] with score 0.926 - nose: (59.61, 100.49) with score 0.979 - left_eye: (66.44, 96.11) with score 0.954 - right_eye: (55.82, 96.21) with score 0.908 - left_ear: (76.90, 98.52) with score 0.819 - right_ear: (49.82, 102.11) with score 0.571 - left_shoulder: (87.07, 135.82) with score 0.990 - right_shoulder: (36.53, 134.96) with score 0.987 - left_elbow: (102.21, 193.66) with score 0.970 - right_elbow: (24.85, 187.30) with score 0.947 - left_wrist: (110.61, 245.75) with score 0.962 - right_wrist: (6.28, 233.46) with score 0.939 - left_hip: (82.71, 230.04) with score 0.997 - right_hip: (48.15, 235.65) with score 0.995 - left_knee: (95.27, 321.57) with score 0.993 - right_knee: (52.73, 320.56) with score 0.991 - left_ankle: (100.90, 415.89) with score 0.948 - right_ankle: (56.65, 417.09) with score 0.942 Found person at [109.67742919921875, 12.466975402832032, 501.75636291503906, 533.3693368911744] with score 0.934 - nose: (126.43, 96.98) with score 0.715 - left_eye: (126.52, 88.36) with score 0.664 - left_ear: (136.92, 78.79) with score 0.934 - left_shoulder: (191.69, 125.31) with score 0.998 - right_shoulder: (166.08, 138.95) with score 0.993 - left_elbow: (254.38, 194.23) with score 0.997 - right_elbow: (186.09, 258.25) with score 0.986 - left_wrist: (309.75, 260.93) with score 0.990 - right_wrist: (133.20, 283.14) with score 0.973 - left_hip: (281.07, 280.72) with score 1.000 - right_hip: (258.20, 300.47) with score 1.000 - left_knee: (228.48, 442.67) with score 0.999 - right_knee: (250.90, 474.40) with score 0.999 - left_ankle: (343.96, 435.26) with score 0.979 - right_ankle: (340.41, 601.64) with score 0.971 Found person at [422.38683700561523, 67.97338972091676, 638.0375099182129, 493.7016093254089] with score 0.932 - nose: (417.60, 144.74) with score 0.989 - left_eye: (426.67, 134.88) with score 0.959 - right_eye: (410.81, 135.93) with score 0.952 - left_ear: (443.39, 137.08) with score 0.771 - right_ear: (400.11, 142.05) with score 0.753 - left_shoulder: (446.92, 202.43) with score 0.997 - right_shoulder: (374.31, 196.36) with score 0.993 - left_elbow: (458.77, 287.40) with score 0.990 - right_elbow: (355.46, 260.60) with score 0.971 - left_wrist: (488.87, 354.68) with score 0.984 - right_wrist: (402.03, 263.57) with score 0.978 - left_hip: (432.69, 349.58) with score 0.998 - right_hip: (381.51, 366.30) with score 0.996 - left_knee: (463.97, 447.94) with score 0.991 - right_knee: (403.90, 511.95) with score 0.978 - left_ankle: (450.14, 562.29) with score 0.889 - right_ankle: (436.81, 548.29) with score 0.759 ```