File size: 3,146 Bytes
88182f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9a93c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88182f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
base_model: unsloth/gemma-7b-bnb-4bit
---

# Uploaded  model

- **Developed by:** Xhaheen
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit

This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.



# Inference With Unsloth on colab


```python3


import torch
major_version, minor_version = torch.cuda.get_device_capability()
 

!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass



from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False 
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Xhaheen/Gemma_Urdu_Shaheen_1_epoch",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    device_map="auto"
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

input_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""

input_text = input_prompt.format(
        "دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
        "قابل تجدید توانائی کے استعمال کی اہمیت", # input
        "", # output - leave this blank for generation!
    )

inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)

response = tokenizer.batch_decode(outputs)

```



# Inference With Inference with HuggingFace transformers




```python3

from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

model = AutoPeftModelForCausalLM.from_pretrained(
    "Xhaheen/Gemma_Urdu_Shaheen_1_epoch",
    load_in_4bit = False
)
tokenizer = AutoTokenizer.from_pretrained("Xhaheen/Gemma_Urdu_Shaheen_1_epoch")


input_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""



input_text = input_prompt.format(
        "دیئے گئے موضوع کے بارے میں ایک مختصر پیراگراف لکھیں۔", # instruction
        "قابل تجدید توانائی کے استعمال کی اہمیت", # input
        "", # output - leave this blank for generation!
    )

inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)[0]

```








[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)