YassineB commited on
Commit
cb2554c
1 Parent(s): 2ca0c86

Add inference endpoint

Browse files
Files changed (3) hide show
  1. README.md +1 -0
  2. example_input.json +3 -0
  3. handler.py +53 -0
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Please use the image nvcr.io/nvidia/pytorch:21.11-py3 when you want to launch it
example_input.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "inputs": "https://media.lesechos.com/api/v1/images/view/5dadc9de8fe56f4ddf251469/1280x720/0602095339508-web-tete.jpg"
3
+ }
handler.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from torchvision.models import resnet18, ResNet18_Weights
3
+ from torchvision.io import read_image
4
+ from PIL import Image
5
+ import io
6
+ import requests
7
+ import torchvision.transforms.functional as transform
8
+
9
+ from torch2trt import torch2trt
10
+ from torchvision.models.alexnet import alexnet
11
+ import torch
12
+
13
+ # create some regular pytorch model...
14
+ model = alexnet(pretrained=True).eval().cuda()
15
+
16
+ # create example data
17
+ x = torch.ones((1, 3, 224, 224)).cuda()
18
+
19
+ # convert to TensorRT feeding sample data as input
20
+ model_trt = torch2trt(model, [x])
21
+
22
+ class EndpointHandler():
23
+ def __init__(self, path=""):
24
+ weights = ResNet18_Weights.DEFAULT
25
+ # create some regular pytorch model...
26
+ model = resnet18(weights=weights).eval().cuda()
27
+
28
+ # create example data
29
+ x = torch.ones((1, 3, 224, 224)).cuda()
30
+
31
+ # convert to TensorRT feeding sample data as input
32
+ self.pipeline = torch2trt(model, [x])
33
+ self.preprocess = weights.transforms()
34
+
35
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
36
+ """
37
+ data args:
38
+ inputs (:obj: `str`)
39
+ Return:
40
+ A :obj:`list` | `dict`: will be serialized and returned
41
+ """
42
+ # get inputs
43
+ inputs = data.pop("inputs",data)
44
+ if inputs.startswith("http") or inputs.startswith("www"):
45
+ response = requests.get(inputs).content
46
+ img = transform.to_tensor(Image.open(io.BytesIO(response)))
47
+ else:
48
+ img = read_image(inputs)
49
+
50
+ batch = self.preprocess(img).unsqueeze(0)
51
+ prediction = self.pipeline(batch).squeeze(0).softmax(0)
52
+
53
+ return prediction.tolist()