Upload TFBertForSequenceClassification
Browse files- README.md +57 -0
- config.json +25 -0
- tf_model.h5 +3 -0
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_keras_callback
|
5 |
+
model-index:
|
6 |
+
- name: Qt5Classic_Train_Balance_DATA_ratio_1
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
11 |
+
probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# Qt5Classic_Train_Balance_DATA_ratio_1
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Train Loss: 0.6144
|
18 |
+
- Train Accuracy: 0.6671
|
19 |
+
- Validation Loss: 0.6701
|
20 |
+
- Validation Accuracy: 0.5792
|
21 |
+
- Epoch: 2
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
|
41 |
+
- training_precision: float32
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|
46 |
+
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
|
47 |
+
| 0.6773 | 0.6069 | 0.6903 | 0.6178 | 0 |
|
48 |
+
| 0.6477 | 0.6356 | 0.6878 | 0.5560 | 1 |
|
49 |
+
| 0.6144 | 0.6671 | 0.6701 | 0.5792 | 2 |
|
50 |
+
|
51 |
+
|
52 |
+
### Framework versions
|
53 |
+
|
54 |
+
- Transformers 4.29.2
|
55 |
+
- TensorFlow 2.12.0
|
56 |
+
- Datasets 2.12.0
|
57 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.29.2",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:547c86d11bd0bce745630b3cb4f37fce66f47f546fe07cfda1edf317e4598d7e
|
3 |
+
size 438223128
|