--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # whisper-base-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8628 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.269 | 1.0 | 113 | 1.2992 | 0.58 | | 0.7151 | 2.0 | 226 | 0.8213 | 0.74 | | 0.6653 | 3.0 | 339 | 0.5565 | 0.82 | | 0.2204 | 4.0 | 452 | 0.6119 | 0.83 | | 0.1591 | 5.0 | 565 | 0.6247 | 0.88 | | 0.006 | 6.0 | 678 | 0.6778 | 0.86 | | 0.0066 | 7.0 | 791 | 0.8567 | 0.84 | | 0.002 | 8.0 | 904 | 0.7583 | 0.87 | | 0.0016 | 9.0 | 1017 | 0.9243 | 0.85 | | 0.0015 | 10.0 | 1130 | 0.8628 | 0.85 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1