YeungNLP commited on
Commit
ee91001
1 Parent(s): 5811061

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -0
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 项目地址:[LLMPruner:大语言模型裁剪工具](https://github.com/yangjianxin1/LLMPruner)
2
+
3
+ LLMPruner是一个大语言模型裁剪工具,通过对大语言模型的冗余词表进行裁剪,减少模型参数量,降低显存占用,提升训练速度,并且能够保留预训练中学习到的知识。
4
+
5
+ 本项目对Bloom进行词表裁剪,保留中文token和常用的英文token,词表由250880将至46145,缩减为原来的18.39%。裁剪得到的Bloom模型如下表:
6
+
7
+ | 裁剪模型 | 原模型 | 参数量比例 |
8
+ |-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|
9
+ | [YeungNLP/bloom-396m-zh](https://huggingface.co/YeungNLP/bloom-396m-zh) | [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) | 70.96% |
10
+ | [YeungNLP/bloom-820m-zh](https://huggingface.co/YeungNLP/bloom-820m-zh) | [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) | 77.13% |
11
+ | [YeungNLP/bloom-1b4-zh](https://huggingface.co/YeungNLP/bloom-1b4-zh) | [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) | 81.14% |
12
+ | [YeungNLP/bloom-2b6-zh](https://huggingface.co/YeungNLP/bloom-2b6-zh) | [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) | 86.48% |
13
+ | [YeungNLP/bloom-6b4-zh](https://huggingface.co/YeungNLP/bloom-6b4-zh) | [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) | 90.81% |
14
+ | [YeungNLP/bloomz-396m-zh](https://huggingface.co/YeungNLP/bloomz-396m-zh) | [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) | 70.96% |
15
+ | [YeungNLP/bloomz-820m-zh](https://huggingface.co/YeungNLP/bloomz-820m-zh) | [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) | 77.13% |
16
+ | [YeungNLP/bloomz-1b4-zh](https://huggingface.co/YeungNLP/bloomz-1b4-zh) | [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7) | 81.14% |
17
+ | [YeungNLP/bloomz-2b6-zh](https://huggingface.co/YeungNLP/bloomz-2b6-zh) | [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b) | 86.48% |
18
+ | [YeungNLP/bloomz-6b4-zh](https://huggingface.co/YeungNLP/bloomz-6b4-zh) | [bigscience/bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) | 90.81% |
19
+ | [YeungNLP/bloomz-6b4-mt-zh](https://huggingface.co/YeungNLP/bloomz-6b4-mt-zh) | [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) | 90.81% |
20
+
21
+
22
+ 使用方法:
23
+ ```python
24
+ from transformers import BloomTokenizerFast, BloomForCausalLM
25
+
26
+ tokenizer = BloomTokenizerFast.from_pretrained('YeungNLP/bloom-1b4-zh')
27
+ model = BloomForCausalLM.from_pretrained('YeungNLP/bloom-1b4-zh')
28
+ print(tokenizer.batch_decode(model.generate(tokenizer.encode('长风破浪会有时', return_tensors='pt'))))
29
+ ```