File size: 2,450 Bytes
4a34f4a 36fa8d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
该模型使用llama-13b,使用UltraChat数据集进行指令微调,约140万多轮对话数据。仅需一张显卡即可完成训练。
firefly-llama-13b在🤗Hugging Face的Open LLM榜单上进行了客观的评测。
在榜单上,firefly-llama-13b取得了不错的效果,比vicuna-13b-1.1略高0.2分,比llama-2-13b-chat略低0.5分,比vicuna-13b-v1.3略低0.6分。从评测分数来看,firefly-llama-13b与vicuna-13b、llama-2-13b-chat的水平非常接近😎。
| 模型 | Average | ARC | HellaSwag | MMLU | TruthfulQA (MC) |
|--------------------------------------------------------------------------------|-------|----------------------|------------|------------|------|
| Llama-2-70b-chat-hf | 66.8 | 64.6 | 85.9 | 63.9 | 52.8 |
| vicuna-13b-v1.3 | 60 | 54.6 | 80.4 | 52.9 | 52.1 |
| Llama-2-13b-chat-hf | 59.9 | 59 | 81.9 | 54.6 | 44.1 |
| firefly-llama-13b |59.4 | 59 | 79.7 | 49.1 | 49.6 |
| vicuna-13b-1.1 | 59.2 | 52.7 | 80.1 |51.9 | 52.1 |
| guanaco-13B-HF | 59.1 | 57.8 | 83.8 |48.3 | 46.7|
值得注意的是,vicuna-13b模型采用的是全量参数微调,对训练资源的要求十分高。而firefly-llama-13b采用的则是QLoRA微调,最少仅需16G显存,即可对13B的模型进行微调。
详细介绍见文章:[Firefly单卡复刻Vicuna-13B,Open LLM榜单🤗略高0.2分](https://mp.weixin.qq.com/s/QG2YMo_QxaxS_Rr2yJrIeA)
更多详情见[Firefly项目](https://github.com/yangjianxin1/Firefly)
[Open LLM排行榜](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_YeungNLP__firefly-llama-13b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 49.12 |
| ARC (25-shot) | 58.96 |
| HellaSwag (10-shot) | 79.71 |
| MMLU (5-shot) | 49.1 |
| TruthfulQA (0-shot) | 49.59 |
| Winogrande (5-shot) | 75.61 |
| GSM8K (5-shot) | 8.19 |
| DROP (3-shot) | 22.69 |
|