File size: 3,844 Bytes
8ec0291
f7d0a1d
65f6bd8
f7d0a1d
 
e9d1818
 
 
23a1e74
f7d0a1d
 
 
e59e26c
f7d0a1d
 
 
783db85
e46b579
 
f7d0a1d
 
 
 
 
 
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
 
e0a73e4
f7d0a1d
8ec0291
 
0144301
8ec0291
096e78f
8ec0291
 
 
 
 
 
 
 
 
 
bdeb8c9
 
8ec0291
096e78f
8ec0291
 
 
c517963
2d799d8
8ec0291
 
 
2f5b029
8ec0291
 
 
2f5b029
8ec0291
 
 
 
0144301
 
94f84e2
d6592c2
94f84e2
 
 
 
 
0144301
 
 
94f84e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0144301
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
base_model: PekingU/rtdetr_r101vd_coco_o365
datasets: keremberke/satellite-building-segmentation
library_name: transformers
license: mit
metrics:
- Average Precision (AP)
- Average Recall (AR)
pipeline_tag: object-detection
tags:
- remote sensing
- object detection
widget:
- src: img.png
  output:
    url: img.png
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
  results:
  - task:
      type: object-detection
    dataset:
      name: keremberke/satellite-building-segmentation
      type: image-segmentation
    metrics:
    - type: AP (IoU=0.50:0.95)
      value: 0.434
      name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
    - type: AP (IoU=0.50)
      value: 0.652
      name: AP @ IoU=0.50 | area=all | maxDets=100
    - type: AP (IoU=0.75)
      value: 0.464
      name: AP @ IoU=0.75 | area=all | maxDets=100
    - type: AP (IoU=0.50:0.95) small objects
      value: 0.248
      name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
    - type: AP (IoU=0.50:0.95) medium objects
      value: 0.510
      name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
    - type: AP (IoU=0.50:0.95) large objects
      value: 0.632
      name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
    - type: AR (IoU=0.50:0.95) maxDets=1
      value: 0.056
      name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
    - type: AR (IoU=0.50:0.95) maxDets=10
      value: 0.328
      name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
    - type: AR (IoU=0.50:0.95) maxDets=100
      value: 0.519
      name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
    - type: AR (IoU=0.50:0.95) small objects
      value: 0.337
      name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
    - type: AR (IoU=0.50:0.95) medium objects
      value: 0.601
      name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
    - type: AR (IoU=0.50:0.95) large objects
      value: 0.714
      name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
---

# Model Card

Roof Detection for Remote Sensing task.
<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Model type:** Object Detection for Remote Sensing task.
- **License:** MIT

### Model Sources 

<!-- Provide the basic links for the model. -->

- **GitHub:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb)
- **Demo:** [Hugging Face Space](https://huggingface.co/spaces/Yifeng-Liu/satellite-image-roofs-auto-annotation)



## Limitations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

## How to Get Started with the Model

Use the code below to get started with the model.
```python
from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import cv2

image_path=YOUR_IMAGE_PATH
image = cv2.imread(image_path)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")


CONFIDENCE_TRESHOLD = 0.5

with torch.no_grad():
    model.to(device)

    # load image and predict
    inputs = image_processor(images=image, return_tensors='pt').to(device)
    outputs = model(**inputs)

    # post-process
    target_sizes = torch.tensor([image.shape[:2]]).to(device)
    results = image_processor.post_process_object_detection(
        outputs=outputs,
        threshold=CONFIDENCE_TRESHOLD,
        target_sizes=target_sizes
    )[0]
```