YojitShinde commited on
Commit
db72f0c
1 Parent(s): b6977a2

Push LunarLander-v2 Model

Browse files
PPO_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9815837d6ede892cd16051d42c392a8369f42be5fd46f70090973b57ba617fa
3
+ size 146743
PPO_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
PPO_LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0dbfe3a440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0dbfe3a4d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0dbfe3a560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0dbfe3a5f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0dbfe3a680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0dbfe3a710>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0dbfe3a7a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0dbfe3a830>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0dbfe3a8c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0dbfe3a950>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0dbfe3a9e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0dbfe3aa70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0dbfe44180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688581637042435196,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq/d7xxDxa7RLi4vLmalTw/YOy79AuBPQAAgD8AAIA/ZgZkOnuEiLqMOwk57XcqtWrkALteUx+4AACAPwAAgD8APYE8Ctt2OubyrLp5HdE7WIv0O1KRJroAAAAAAAAAAI28jj0pYHG67cKMuzVxgjjoDI673WkGOQAAgD8AAIA/mg0WveyJ6rlbtNu45xMItAj2gDrJmgA4AACAPwAAgD8AUS89+1EIP96glr1uUJe+M8Xhu7V1zrwAAAAAAAAAAGahOj3D0T+6Lf9rO+D2RDhI+G+6Ut4TugAAgD8AAIA/MyKFvR8ds7mtZXG51c4MNIIXiruwYI44AACAPwAAgD8zXRa9pHd1u/pLkTyTrgk9humQuZ2A/DwAAIA/AACAPzPtFj1Iy7K6kb+WO5IeTDideMq5e9pBuAAAgD8AAIA/5ntEvY92Zro5e487RyIuttdYpDpWxia1AACAPwAAgD8zBim9KSB4utYytLdTsqOyg0+5Os1Y0jYAAIA/AACAPyausD1SOKu5evgyOXo7qLeamfU621eCOAAAgD8AAIA/msDwPGyz17uUHpm82hSIPDiKQ70if2U9AACAPwAAgD/NLD09XLt0ukUH7DovcUk4rdCpuqCajbkAAIA/AACAP7MXDT0FbvE+nCA9OwsKiL7uMAM9otSxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMaOOKfnOmMAWyUTegDjAF0lEdAoMXpl+Vkc3V9lChoBkdAcF7FTvRZ2mgHTdwCaAhHQKDIP3JxNqR1fZQoaAZHQGQKiH6/IsBoB03oA2gIR0CgygE4WDYidX2UKGgGR0BimhXdTHbRaAdN6ANoCEdAoMuVENOM2nV9lChoBkdAZsW/keZG8WgHTegDaAhHQKDPRwJgLJF1fZQoaAZHQGJLpCa7VaxoB03oA2gIR0Cgz5Auh9LIdX2UKGgGR0BjT7Dye7L/aAdN6ANoCEdAoNzccyWRinV9lChoBkdAYvgyWzF+/mgHTegDaAhHQKDhuhxo7FN1fZQoaAZHQF6ItSAH3URoB03oA2gIR0Cg4jJR4yGjdX2UKGgGR0BjUrpFCswMaAdN6ANoCEdAoONTAvcrRXV9lChoBkdAY0onhKlHjWgHTegDaAhHQKDj3Pppvgp1fZQoaAZHQGTOzBZZB9loB03oA2gIR0Cg5adlNDc/dX2UKGgGR0BmDfjfek57aAdN6ANoCEdAoOZCmdiDunV9lChoBkdAYJGRs/IKdGgHTegDaAhHQKDntFOwgT11fZQoaAZHQGKh3Dej2zxoB03oA2gIR0Cg5/VMEidKdX2UKGgGR0BUfg71ZkkKaAdL5WgIR0Cg6SleF+NMdX2UKGgGR0Bkx5LEk0JoaAdN6ANoCEdAoOp8cIZ62XV9lChoBkdAZSCLHdXT3WgHTegDaAhHQKDvAgxrSE11fZQoaAZHQGMRFQl8gIRoB03oA2gIR0Cg8Q0Lc9GJdX2UKGgGR0Bi1ltj0+TvaAdN6ANoCEdAoPK5VjqfOHV9lChoBkdAYN3A+pwS8WgHTegDaAhHQKD0Nx6OYIB1fZQoaAZHQEcp+yZ8a4toB0vkaAhHQKD3KSsbNr11fZQoaAZHQGd7fsu3+ddoB03oA2gIR0Cg+T2krPMTdX2UKGgGR0BkR6Nn5BToaAdN6ANoCEdAoPmj5bhWHXV9lChoBkdAZN/vhIe5nWgHTegDaAhHQKD+p90ihWZ1fZQoaAZHQGH5tOuaF25oB03oA2gIR0ChC0Jyp71JdX2UKGgGR0BjmONm16VuaAdN6ANoCEdAoQvMNlRP43V9lChoBkdAaPXy+6Ae72gHTegDaAhHQKENwFg2Ift1fZQoaAZHQGHdACGN70FoB03oA2gIR0ChD/6GQCCBdX2UKGgGR0Blbhi1AqusaAdN6ANoCEdAoRC3UtqYZ3V9lChoBkdAZ/HeEZiuuGgHTegDaAhHQKESbxIatLd1fZQoaAZHQGGId4u9OARoB03oA2gIR0ChErfvfCQ+dX2UKGgGR0BnaQGnn+yaaAdN6ANoCEdAoRRuyPdVN3V9lChoBkdAaScu4gA6uGgHTegDaAhHQKEWUNb1RLt1fZQoaAZHQEV7ch1Tzd1oB0vzaAhHQKEb5wx33Yd1fZQoaAZHQE5AaqjrRjVoB0u/aAhHQKEcKxUNrj51fZQoaAZHQF7mKji4rjJoB03oA2gIR0ChHrlHJ9y+dX2UKGgGR0Bja8l1KXfJaAdN6ANoCEdAoSBAe9zwMHV9lChoBkdAY8LPnjhky2gHTegDaAhHQKEhqsLfDUF1fZQoaAZHQGCX5n13+uNoB03oA2gIR0ChI6Md1dPddX2UKGgGR0BhKXFxXGOuaAdN6ANoCEdAoST8jZ+QVHV9lChoBkdAX8afh/Aj6mgHTegDaAhHQKElP1pTMq11fZQoaAZHQGUh4YJmdy1oB03oA2gIR0ChKGvy08eTdX2UKGgGR0BkmP9LpRoAaAdN6ANoCEdAoTXCa9bosHV9lChoBkdAYynFsHjZMGgHTegDaAhHQKE2d1yNn5B1fZQoaAZHQGWQOQQtjCpoB03oA2gIR0ChOUu9WZJDdX2UKGgGR0BmJaKWLP2PaAdN6ANoCEdAoTv6KJl8PXV9lChoBkdAYarFQVKwp2gHTegDaAhHQKE8s6ltTDR1fZQoaAZHQGVWFsHjZL9oB03oA2gIR0ChPq8FhXr/dX2UKGgGR0BgJszTF2mpaAdN6ANoCEdAoUGnkxREW3V9lChoBkdAZs9PRiPQwGgHTegDaAhHQKFF798Z1mt1fZQoaAZHQGRxtMfzSThoB03oA2gIR0ChRiIUrTYvdX2UKGgGR0BkuSiudPLxaAdN6ANoCEdAoUhyjQAuI3V9lChoBkdAYxPr9l2/z2gHTegDaAhHQKFJ/sZ5zHV1fZQoaAZHQGVQoInjQzFoB03oA2gIR0ChS2ZUT+NtdX2UKGgGR0Bnj/2IwdsBaAdN6ANoCEdAoU1uLLpzLnV9lChoBkdAZez2Cdz4lGgHTegDaAhHQKFOvnLaEjB1fZQoaAZHQGMmnxjJ+2FoB03oA2gIR0ChTv+CbtqpdX2UKGgGR0Bl3b7l7tzCaAdN6ANoCEdAoVNaaRZED3V9lChoBkdAaPwTWXkYGmgHTegDaAhHQKFh7TOPeYV1fZQoaAZHQGYfryUcGTtoB03oA2gIR0ChYnaBI4EPdX2UKGgGR0Bc+bcGkep5aAdN6ANoCEdAoWRv4ubqhXV9lChoBkdAOMVQMx46fmgHS+JoCEdAoWVViH6/I3V9lChoBkdAcAm9OymhumgHTc8DaAhHQKFlyJAt4A11fZQoaAZHQGJqdVea8YhoB03oA2gIR0ChZz7VJ+UhdX2UKGgGR0BSWWXokiUxaAdLvmgIR0ChaE+FtbcHdX2UKGgGR0BkTPMB6rvLaAdN6ANoCEdAoWlA2S+xnnV9lChoBkdAUF7lYEGJN2gHS8xoCEdAoWvf5FgDzXV9lChoBkdAYvucBEKE4GgHTegDaAhHQKFsP4Oc2BJ1fZQoaAZHQHJ8fZh8YyhoB02AAWgIR0ChbbPfj0cwdX2UKGgGR0BepxYA80UHaAdN6ANoCEdAoXFpIMBp6HV9lChoBkdAZs8MGX5WR2gHTegDaAhHQKFxr2xIJ7d1fZQoaAZHQGFxdLg4wRJoB03oA2gIR0ChdMS6MBIXdX2UKGgGR0BjMCmVJL/TaAdN6ANoCEdAoXbem3vx6XV9lChoBkdAYKrcqvvBrWgHTegDaAhHQKF4hjCHh0h1fZQoaAZHQDC0GpuMuOFoB0vTaAhHQKF5fiRW9151fZQoaAZHQGRNqMvRJEpoB03oA2gIR0ChemEDZDiPdX2UKGgGR0BktK/yoXKsaAdN6ANoCEdAoXuWDWbw0HV9lChoBkdAZt6UVSGahGgHTegDaAhHQKF71pDeCTV1fZQoaAZHQGTLoo/iYLNoB03oA2gIR0ChjqJnYg7pdX2UKGgGR0Bo0mP/7zkIaAdN6ANoCEdAoY/3BDXvpnV9lChoBkdAZSXC4SYgJWgHTegDaAhHQKGTFbHIZIh1fZQoaAZHQFzh3EAHVwxoB03oA2gIR0ChlNI1k1/EdX2UKGgGR0BkyM690zTGaAdN6ANoCEdAoZY4Y1pCbHV9lChoBkdAYusSXdCVr2gHTegDaAhHQKGY5DmbLEF1fZQoaAZHQGN58YZVGTdoB03oA2gIR0ChmT7LdN34dX2UKGgGR0BRKc7dSEUTaAdLxWgIR0Chmhq2rn1WdX2UKGgGR0BtTQ3xWkrPaAdNDwFoCEdAoZpfaURnOHV9lChoBkdAZ/AbiqABk2gHTegDaAhHQKGak+bExZd1fZQoaAZHQHBB7dadMCdoB03LAmgIR0Chmt30XgtOdX2UKGgGR0BSMz6WPcSHaAdLzGgIR0Chm/Yku6ErdX2UKGgGR0BlQoBeXzDoaAdN6ANoCEdAoZzQqEvkBHV9lChoBkdAZb3KPGQ0XWgHTegDaAhHQKGep6IFeOZ1fZQoaAZHQGeG0Aksz2xoB03oA2gIR0Chn+2cBltkdX2UKGgGR0Bh6SVKPGQ0aAdN6ANoCEdAoaEzmGM4tHV9lChoBkdAYecESM98qmgHTegDaAhHQKGjMrwvxpd1fZQoaAZHQFozuhbnoxJoB03oA2gIR0ChpKHoPkJbdX2UKGgGR0BpsEH6dlNDaAdN6ANoCEdAoaTjyz5XVHV9lChoBkdAcjYFm4Ajp2gHTe0BaAhHQKGnwhwEQoV1fZQoaAZHQHGBSU9pyp9oB00TAWgIR0Chp+Q79ycTdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
PPO_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d943686473e32effdc95097c7098f867c26d1fb9105bbba6318e944159378d77
3
+ size 87929
PPO_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4773cf18197cd4f59a2e75cc3fea85d4e07e751ebcac5c69c7fd58b1aba9b858
3
+ size 43329
PPO_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.60 +/- 23.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0dbfe3a440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0dbfe3a4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0dbfe3a560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0dbfe3a5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f0dbfe3a680>", "forward": "<function ActorCriticPolicy.forward at 0x7f0dbfe3a710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0dbfe3a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0dbfe3a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0dbfe3a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0dbfe3a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0dbfe3a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0dbfe3aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0dbfe44180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688581637042435196, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq/d7xxDxa7RLi4vLmalTw/YOy79AuBPQAAgD8AAIA/ZgZkOnuEiLqMOwk57XcqtWrkALteUx+4AACAPwAAgD8APYE8Ctt2OubyrLp5HdE7WIv0O1KRJroAAAAAAAAAAI28jj0pYHG67cKMuzVxgjjoDI673WkGOQAAgD8AAIA/mg0WveyJ6rlbtNu45xMItAj2gDrJmgA4AACAPwAAgD8AUS89+1EIP96glr1uUJe+M8Xhu7V1zrwAAAAAAAAAAGahOj3D0T+6Lf9rO+D2RDhI+G+6Ut4TugAAgD8AAIA/MyKFvR8ds7mtZXG51c4MNIIXiruwYI44AACAPwAAgD8zXRa9pHd1u/pLkTyTrgk9humQuZ2A/DwAAIA/AACAPzPtFj1Iy7K6kb+WO5IeTDideMq5e9pBuAAAgD8AAIA/5ntEvY92Zro5e487RyIuttdYpDpWxia1AACAPwAAgD8zBim9KSB4utYytLdTsqOyg0+5Os1Y0jYAAIA/AACAPyausD1SOKu5evgyOXo7qLeamfU621eCOAAAgD8AAIA/msDwPGyz17uUHpm82hSIPDiKQ70if2U9AACAPwAAgD/NLD09XLt0ukUH7DovcUk4rdCpuqCajbkAAIA/AACAP7MXDT0FbvE+nCA9OwsKiL7uMAM9otSxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMaOOKfnOmMAWyUTegDjAF0lEdAoMXpl+Vkc3V9lChoBkdAcF7FTvRZ2mgHTdwCaAhHQKDIP3JxNqR1fZQoaAZHQGQKiH6/IsBoB03oA2gIR0CgygE4WDYidX2UKGgGR0BimhXdTHbRaAdN6ANoCEdAoMuVENOM2nV9lChoBkdAZsW/keZG8WgHTegDaAhHQKDPRwJgLJF1fZQoaAZHQGJLpCa7VaxoB03oA2gIR0Cgz5Auh9LIdX2UKGgGR0BjT7Dye7L/aAdN6ANoCEdAoNzccyWRinV9lChoBkdAYvgyWzF+/mgHTegDaAhHQKDhuhxo7FN1fZQoaAZHQF6ItSAH3URoB03oA2gIR0Cg4jJR4yGjdX2UKGgGR0BjUrpFCswMaAdN6ANoCEdAoONTAvcrRXV9lChoBkdAY0onhKlHjWgHTegDaAhHQKDj3Pppvgp1fZQoaAZHQGTOzBZZB9loB03oA2gIR0Cg5adlNDc/dX2UKGgGR0BmDfjfek57aAdN6ANoCEdAoOZCmdiDunV9lChoBkdAYJGRs/IKdGgHTegDaAhHQKDntFOwgT11fZQoaAZHQGKh3Dej2zxoB03oA2gIR0Cg5/VMEidKdX2UKGgGR0BUfg71ZkkKaAdL5WgIR0Cg6SleF+NMdX2UKGgGR0Bkx5LEk0JoaAdN6ANoCEdAoOp8cIZ62XV9lChoBkdAZSCLHdXT3WgHTegDaAhHQKDvAgxrSE11fZQoaAZHQGMRFQl8gIRoB03oA2gIR0Cg8Q0Lc9GJdX2UKGgGR0Bi1ltj0+TvaAdN6ANoCEdAoPK5VjqfOHV9lChoBkdAYN3A+pwS8WgHTegDaAhHQKD0Nx6OYIB1fZQoaAZHQEcp+yZ8a4toB0vkaAhHQKD3KSsbNr11fZQoaAZHQGd7fsu3+ddoB03oA2gIR0Cg+T2krPMTdX2UKGgGR0BkR6Nn5BToaAdN6ANoCEdAoPmj5bhWHXV9lChoBkdAZN/vhIe5nWgHTegDaAhHQKD+p90ihWZ1fZQoaAZHQGH5tOuaF25oB03oA2gIR0ChC0Jyp71JdX2UKGgGR0BjmONm16VuaAdN6ANoCEdAoQvMNlRP43V9lChoBkdAaPXy+6Ae72gHTegDaAhHQKENwFg2Ift1fZQoaAZHQGHdACGN70FoB03oA2gIR0ChD/6GQCCBdX2UKGgGR0Blbhi1AqusaAdN6ANoCEdAoRC3UtqYZ3V9lChoBkdAZ/HeEZiuuGgHTegDaAhHQKESbxIatLd1fZQoaAZHQGGId4u9OARoB03oA2gIR0ChErfvfCQ+dX2UKGgGR0BnaQGnn+yaaAdN6ANoCEdAoRRuyPdVN3V9lChoBkdAaScu4gA6uGgHTegDaAhHQKEWUNb1RLt1fZQoaAZHQEV7ch1Tzd1oB0vzaAhHQKEb5wx33Yd1fZQoaAZHQE5AaqjrRjVoB0u/aAhHQKEcKxUNrj51fZQoaAZHQF7mKji4rjJoB03oA2gIR0ChHrlHJ9y+dX2UKGgGR0Bja8l1KXfJaAdN6ANoCEdAoSBAe9zwMHV9lChoBkdAY8LPnjhky2gHTegDaAhHQKEhqsLfDUF1fZQoaAZHQGCX5n13+uNoB03oA2gIR0ChI6Md1dPddX2UKGgGR0BhKXFxXGOuaAdN6ANoCEdAoST8jZ+QVHV9lChoBkdAX8afh/Aj6mgHTegDaAhHQKElP1pTMq11fZQoaAZHQGUh4YJmdy1oB03oA2gIR0ChKGvy08eTdX2UKGgGR0BkmP9LpRoAaAdN6ANoCEdAoTXCa9bosHV9lChoBkdAYynFsHjZMGgHTegDaAhHQKE2d1yNn5B1fZQoaAZHQGWQOQQtjCpoB03oA2gIR0ChOUu9WZJDdX2UKGgGR0BmJaKWLP2PaAdN6ANoCEdAoTv6KJl8PXV9lChoBkdAYarFQVKwp2gHTegDaAhHQKE8s6ltTDR1fZQoaAZHQGVWFsHjZL9oB03oA2gIR0ChPq8FhXr/dX2UKGgGR0BgJszTF2mpaAdN6ANoCEdAoUGnkxREW3V9lChoBkdAZs9PRiPQwGgHTegDaAhHQKFF798Z1mt1fZQoaAZHQGRxtMfzSThoB03oA2gIR0ChRiIUrTYvdX2UKGgGR0BkuSiudPLxaAdN6ANoCEdAoUhyjQAuI3V9lChoBkdAYxPr9l2/z2gHTegDaAhHQKFJ/sZ5zHV1fZQoaAZHQGVQoInjQzFoB03oA2gIR0ChS2ZUT+NtdX2UKGgGR0Bnj/2IwdsBaAdN6ANoCEdAoU1uLLpzLnV9lChoBkdAZez2Cdz4lGgHTegDaAhHQKFOvnLaEjB1fZQoaAZHQGMmnxjJ+2FoB03oA2gIR0ChTv+CbtqpdX2UKGgGR0Bl3b7l7tzCaAdN6ANoCEdAoVNaaRZED3V9lChoBkdAaPwTWXkYGmgHTegDaAhHQKFh7TOPeYV1fZQoaAZHQGYfryUcGTtoB03oA2gIR0ChYnaBI4EPdX2UKGgGR0Bc+bcGkep5aAdN6ANoCEdAoWRv4ubqhXV9lChoBkdAOMVQMx46fmgHS+JoCEdAoWVViH6/I3V9lChoBkdAcAm9OymhumgHTc8DaAhHQKFlyJAt4A11fZQoaAZHQGJqdVea8YhoB03oA2gIR0ChZz7VJ+UhdX2UKGgGR0BSWWXokiUxaAdLvmgIR0ChaE+FtbcHdX2UKGgGR0BkTPMB6rvLaAdN6ANoCEdAoWlA2S+xnnV9lChoBkdAUF7lYEGJN2gHS8xoCEdAoWvf5FgDzXV9lChoBkdAYvucBEKE4GgHTegDaAhHQKFsP4Oc2BJ1fZQoaAZHQHJ8fZh8YyhoB02AAWgIR0ChbbPfj0cwdX2UKGgGR0BepxYA80UHaAdN6ANoCEdAoXFpIMBp6HV9lChoBkdAZs8MGX5WR2gHTegDaAhHQKFxr2xIJ7d1fZQoaAZHQGFxdLg4wRJoB03oA2gIR0ChdMS6MBIXdX2UKGgGR0BjMCmVJL/TaAdN6ANoCEdAoXbem3vx6XV9lChoBkdAYKrcqvvBrWgHTegDaAhHQKF4hjCHh0h1fZQoaAZHQDC0GpuMuOFoB0vTaAhHQKF5fiRW9151fZQoaAZHQGRNqMvRJEpoB03oA2gIR0ChemEDZDiPdX2UKGgGR0BktK/yoXKsaAdN6ANoCEdAoXuWDWbw0HV9lChoBkdAZt6UVSGahGgHTegDaAhHQKF71pDeCTV1fZQoaAZHQGTLoo/iYLNoB03oA2gIR0ChjqJnYg7pdX2UKGgGR0Bo0mP/7zkIaAdN6ANoCEdAoY/3BDXvpnV9lChoBkdAZSXC4SYgJWgHTegDaAhHQKGTFbHIZIh1fZQoaAZHQFzh3EAHVwxoB03oA2gIR0ChlNI1k1/EdX2UKGgGR0BkyM690zTGaAdN6ANoCEdAoZY4Y1pCbHV9lChoBkdAYusSXdCVr2gHTegDaAhHQKGY5DmbLEF1fZQoaAZHQGN58YZVGTdoB03oA2gIR0ChmT7LdN34dX2UKGgGR0BRKc7dSEUTaAdLxWgIR0Chmhq2rn1WdX2UKGgGR0BtTQ3xWkrPaAdNDwFoCEdAoZpfaURnOHV9lChoBkdAZ/AbiqABk2gHTegDaAhHQKGak+bExZd1fZQoaAZHQHBB7dadMCdoB03LAmgIR0Chmt30XgtOdX2UKGgGR0BSMz6WPcSHaAdLzGgIR0Chm/Yku6ErdX2UKGgGR0BlQoBeXzDoaAdN6ANoCEdAoZzQqEvkBHV9lChoBkdAZb3KPGQ0XWgHTegDaAhHQKGep6IFeOZ1fZQoaAZHQGeG0Aksz2xoB03oA2gIR0Chn+2cBltkdX2UKGgGR0Bh6SVKPGQ0aAdN6ANoCEdAoaEzmGM4tHV9lChoBkdAYecESM98qmgHTegDaAhHQKGjMrwvxpd1fZQoaAZHQFozuhbnoxJoB03oA2gIR0ChpKHoPkJbdX2UKGgGR0BpsEH6dlNDaAdN6ANoCEdAoaTjyz5XVHV9lChoBkdAcjYFm4Ajp2gHTe0BaAhHQKGnwhwEQoV1fZQoaAZHQHGBSU9pyp9oB00TAWgIR0Chp+Q79ycTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.59566559999996, "std_reward": 23.364434007002426, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-05T19:30:08.279027"}