YojitShinde
commited on
Commit
•
8a34d1b
1
Parent(s):
f6c6eba
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +97 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.58 +/- 0.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:221c8037ddc99e4b752b618c0e5f2cbd8e27b965b48e2ea5b2a7c5984ba176fe
|
3 |
+
size 109582
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78482806f5b0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78482806a5c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"num_timesteps": 1000000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1689932019903916589,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFlmcPkxiIrzJgxY/FlmcPkxiIrzJgxY/FlmcPkxiIrzJgxY/FlmcPkxiIrzJgxY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATUFnv8eUuj9FhGW+/rDSv5q40L4cyfq9jbUHPxPAZb9TB/Q9sF1Fv2SFmL+Hdmy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWWZw+TGIivMmDFj9E8Lc997cpuuntiD0WWZw+TGIivMmDFj9E8Lc997cpuuntiD0WWZw+TGIivMmDFj9E8Lc997cpuuntiD0WWZw+TGIivMmDFj9E8Lc997cpuuntiD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[ 0.30536717 -0.00991113 0.5879484 ]\n [ 0.30536717 -0.00991113 0.5879484 ]\n [ 0.30536717 -0.00991113 0.5879484 ]\n [ 0.30536717 -0.00991113 0.5879484 ]]",
|
40 |
+
"desired_goal": "[[-0.90334016 1.4576653 -0.22413738]\n [-1.6460264 -0.4076584 -0.1224539 ]\n [ 0.530114 -0.89746207 0.11915459]\n [-0.7709608 -1.1915708 -0.9236836 ]]",
|
41 |
+
"observation": "[[ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]\n [ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]\n [ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]\n [ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]]"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJc+9PUScIz2jqI0+2jqSPFFghbxhRDM+Zc4BPopJdD3zKqg9NNwxvaBYBT578Uo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.09268025 0.03994395 0.27667722]\n [ 0.01785033 -0.01628128 0.17506553]\n [ 0.1267639 0.05964044 0.08211317]\n [-0.04342289 0.13022089 0.1981868 ]]",
|
52 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
+
},
|
54 |
+
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
+
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": 0.0,
|
58 |
+
"_stats_window_size": 100,
|
59 |
+
"ep_info_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4jrGFRdH5L+UhpRSlIwBbJRLMowBdJRHQKgCJAymALB1fZQoaAZoCWgPQwiHb2HdePfyv5SGlFKUaBVLMmgWR0CoAeaVD8cddX2UKGgGaAloD0MIK6Vneokx4r+UhpRSlGgVSzJoFkdAqAGk/IKc/nV9lChoBmgJaA9DCI9Rnnk5rPC/lIaUUpRoFUsyaBZHQKgBZEVnEl51fZQoaAZoCWgPQwgdPulEginmv5SGlFKUaBVLMmgWR0CoA+eaa1CxdX2UKGgGaAloD0MIEf+wpUdT67+UhpRSlGgVSzJoFkdAqAOo24uscXV9lChoBmgJaA9DCFzHuOLiKO+/lIaUUpRoFUsyaBZHQKgDZqoqCpZ1fZQoaAZoCWgPQwi/uFSlLS7nv5SGlFKUaBVLMmgWR0CoAyUZm7J5dX2UKGgGaAloD0MIAad38X5c4r+UhpRSlGgVSzJoFkdAqAT1oN/e+HV9lChoBmgJaA9DCMqK4eoACOW/lIaUUpRoFUsyaBZHQKgEtvrnkkt1fZQoaAZoCWgPQwiMnfASnPrfv5SGlFKUaBVLMmgWR0CoBHR6F/QTdX2UKGgGaAloD0MIRIfAkUAD47+UhpRSlGgVSzJoFkdAqAQyvaDf33V9lChoBmgJaA9DCPFiYYicPuS/lIaUUpRoFUsyaBZHQKgGCro4dZJ1fZQoaAZoCWgPQwgYWwhyUELqv5SGlFKUaBVLMmgWR0CoBcwNsnAqdX2UKGgGaAloD0MIiZl9HqM83r+UhpRSlGgVSzJoFkdAqAWJ1LamGnV9lChoBmgJaA9DCMJrlzYcFuW/lIaUUpRoFUsyaBZHQKgFSDPnjhl1fZQoaAZoCWgPQwhbBwd7E4Pyv5SGlFKUaBVLMmgWR0CoBwymQ8wIdX2UKGgGaAloD0MI/BpJgnAF3r+UhpRSlGgVSzJoFkdAqAbN14gRsnV9lChoBmgJaA9DCB8PfXcrS+e/lIaUUpRoFUsyaBZHQKgGi4nWrfd1fZQoaAZoCWgPQwiERrBx/Tvgv5SGlFKUaBVLMmgWR0CoBknGCI1tdX2UKGgGaAloD0MI/ACkNnHy7b+UhpRSlGgVSzJoFkdAqAgi4vvjO3V9lChoBmgJaA9DCIqO5PIf0ua/lIaUUpRoFUsyaBZHQKgH5F0gbId1fZQoaAZoCWgPQwgk0csollvUv5SGlFKUaBVLMmgWR0CoB6IkAxSHdX2UKGgGaAloD0MIzPEKRE/K17+UhpRSlGgVSzJoFkdAqAdgZGax5nV9lChoBmgJaA9DCJ/KaU/JOe+/lIaUUpRoFUsyaBZHQKgJKZKFqSJ1fZQoaAZoCWgPQwiI8gUtJODkv5SGlFKUaBVLMmgWR0CoCOrkKeCkdX2UKGgGaAloD0MIX1/rUiM0+b+UhpRSlGgVSzJoFkdAqAioqG1x83V9lChoBmgJaA9DCAkbnl4py92/lIaUUpRoFUsyaBZHQKgIZ4JNTLp1fZQoaAZoCWgPQwgZ/tMNFPjkv5SGlFKUaBVLMmgWR0CoCja5f+judX2UKGgGaAloD0MIvALRkzIJAMCUhpRSlGgVSzJoFkdAqAn4DDCP63V9lChoBmgJaA9DCFa2D3nLVey/lIaUUpRoFUsyaBZHQKgJtbVz6rN1fZQoaAZoCWgPQwjDRe7p6s70v5SGlFKUaBVLMmgWR0CoCXQHqu8sdX2UKGgGaAloD0MI8wLso1NX5b+UhpRSlGgVSzJoFkdAqAtHh60IC3V9lChoBmgJaA9DCI0o7Q2+MPS/lIaUUpRoFUsyaBZHQKgLCa4MF2V1fZQoaAZoCWgPQwi9xFimXyLQv5SGlFKUaBVLMmgWR0CoCsgN5MURdX2UKGgGaAloD0MIy7+WV6438L+UhpRSlGgVSzJoFkdAqAqGY4Qz13V9lChoBmgJaA9DCDBMpgpGJeK/lIaUUpRoFUsyaBZHQKgMZO6/Zdx1fZQoaAZoCWgPQwhRE30+yojcv5SGlFKUaBVLMmgWR0CoDCZMDfWMdX2UKGgGaAloD0MIS+guibMi4L+UhpRSlGgVSzJoFkdAqAvkEgW8AnV9lChoBmgJaA9DCMdKzLOS1vW/lIaUUpRoFUsyaBZHQKgLoo73fyh1fZQoaAZoCWgPQwj5hsJn6+DMv5SGlFKUaBVLMmgWR0CoDW/fO2RadX2UKGgGaAloD0MIFsCUgQNa1L+UhpRSlGgVSzJoFkdAqA0xCQcPv3V9lChoBmgJaA9DCD2dK0oJwd6/lIaUUpRoFUsyaBZHQKgM7t/nW8R1fZQoaAZoCWgPQwh5d2SsNv/Wv5SGlFKUaBVLMmgWR0CoDK1T72tddX2UKGgGaAloD0MIxcVRuYla47+UhpRSlGgVSzJoFkdAqA56jJuEVXV9lChoBmgJaA9DCGqHvyZr1Oy/lIaUUpRoFUsyaBZHQKgOO/lhgE51fZQoaAZoCWgPQwjlDTDzHXziv5SGlFKUaBVLMmgWR0CoDfmseXAudX2UKGgGaAloD0MI9G4sKAzK57+UhpRSlGgVSzJoFkdAqA24NZvDQHV9lChoBmgJaA9DCNCZtKm6R9m/lIaUUpRoFUsyaBZHQKgPpuejEeh1fZQoaAZoCWgPQwj3j4XoEDjTv5SGlFKUaBVLMmgWR0CoD2hKL877dX2UKGgGaAloD0MIfo/66xUW37+UhpRSlGgVSzJoFkdAqA8l2LYPG3V9lChoBmgJaA9DCIG0/wHW6vS/lIaUUpRoFUsyaBZHQKgO5PDYRNB1fZQoaAZoCWgPQwhx4qsdxbnlv5SGlFKUaBVLMmgWR0CoELdcbBGhdX2UKGgGaAloD0MIbcmqCDcZ2L+UhpRSlGgVSzJoFkdAqBB4omXw9nV9lChoBmgJaA9DCFWEm4wqw+2/lIaUUpRoFUsyaBZHQKgQNkkrwvx1fZQoaAZoCWgPQwgDQBU3bjHWv5SGlFKUaBVLMmgWR0CoD/SkKu0UdX2UKGgGaAloD0MIB9MwfERM47+UhpRSlGgVSzJoFkdAqBHtRFZxJnV9lChoBmgJaA9DCIRLx5xn7OS/lIaUUpRoFUsyaBZHQKgRrpdKNAF1fZQoaAZoCWgPQwhXJvxSP+/hv5SGlFKUaBVLMmgWR0CoEWzFVDKHdX2UKGgGaAloD0MIAmVTrvCu77+UhpRSlGgVSzJoFkdAqBErDIikf3V9lChoBmgJaA9DCDYiGAeXTvK/lIaUUpRoFUsyaBZHQKgS+86FM7F1fZQoaAZoCWgPQwh/wW7Ytqjsv5SGlFKUaBVLMmgWR0CoEr1Z1V5sdX2UKGgGaAloD0MISdv4E5UN3r+UhpRSlGgVSzJoFkdAqBJ7LZBcA3V9lChoBmgJaA9DCJmAXyNJkOW/lIaUUpRoFUsyaBZHQKgSOXSBshx1fZQoaAZoCWgPQwhz843onnXZv5SGlFKUaBVLMmgWR0CoFA/igkC4dX2UKGgGaAloD0MIh97i4T0H77+UhpRSlGgVSzJoFkdAqBPQ8W9DhXV9lChoBmgJaA9DCGjNj7+0KOm/lIaUUpRoFUsyaBZHQKgTjpGnXNF1fZQoaAZoCWgPQwg+zcmLTMDkv5SGlFKUaBVLMmgWR0CoE0zQNTcZdX2UKGgGaAloD0MICfoLPWJ067+UhpRSlGgVSzJoFkdAqBVSqfe1r3V9lChoBmgJaA9DCHHl7J3R1ue/lIaUUpRoFUsyaBZHQKgVFNlAeJZ1fZQoaAZoCWgPQwhtWb4uw3/hv5SGlFKUaBVLMmgWR0CoFNKBVdX1dX2UKGgGaAloD0MI4+E9B5Yj6b+UhpRSlGgVSzJoFkdAqBSQvcrRSnV9lChoBmgJaA9DCHf4a7JGPdO/lIaUUpRoFUsyaBZHQKgWZqyGBWh1fZQoaAZoCWgPQwix3xPrVPnav5SGlFKUaBVLMmgWR0CoFigN5MURdX2UKGgGaAloD0MIxAlMp3Xb9r+UhpRSlGgVSzJoFkdAqBXlk6Lfk3V9lChoBmgJaA9DCIaQ8/4/Tu6/lIaUUpRoFUsyaBZHQKgVo8JUo8Z1fZQoaAZoCWgPQwi+LsN/ugHqv5SGlFKUaBVLMmgWR0CoF4+3pfQbdX2UKGgGaAloD0MIAW4WLxZG8L+UhpRSlGgVSzJoFkdAqBdRH/cWTHV9lChoBmgJaA9DCAVvSKMCp+W/lIaUUpRoFUsyaBZHQKgXDp5eJHl1fZQoaAZoCWgPQwgP0egOYuflv5SGlFKUaBVLMmgWR0CoFszK1XvIdX2UKGgGaAloD0MIqoB7nj9t07+UhpRSlGgVSzJoFkdAqBkzgCOmznV9lChoBmgJaA9DCAbVBieiX+K/lIaUUpRoFUsyaBZHQKgY9aCcwxp1fZQoaAZoCWgPQwgAAAAAAADhv5SGlFKUaBVLMmgWR0CoGLQRGtp3dX2UKGgGaAloD0MIkzoBTYQN37+UhpRSlGgVSzJoFkdAqBhy5sj3VXV9lChoBmgJaA9DCKKakqzD0ey/lIaUUpRoFUsyaBZHQKga5R/mT1V1fZQoaAZoCWgPQwgaMEj6tArwv5SGlFKUaBVLMmgWR0CoGqeHBUJfdX2UKGgGaAloD0MIqFX0h2Ye5L+UhpRSlGgVSzJoFkdAqBpmSU1Q7HV9lChoBmgJaA9DCK5nCMcse+6/lIaUUpRoFUsyaBZHQKgaJb8FY+11fZQoaAZoCWgPQwim1CXjGMnKv5SGlFKUaBVLMmgWR0CoHPv91loUdX2UKGgGaAloD0MIklhS7j7H0r+UhpRSlGgVSzJoFkdAqBy+dqcmSnV9lChoBmgJaA9DCIfAkUCDTe6/lIaUUpRoFUsyaBZHQKgcfvNNahZ1fZQoaAZoCWgPQwi3ek563/jlv5SGlFKUaBVLMmgWR0CoHD4vvjOtdX2UKGgGaAloD0MInStKCcGq2r+UhpRSlGgVSzJoFkdAqB7q+BYms3V9lChoBmgJaA9DCAyuuaP/5eO/lIaUUpRoFUsyaBZHQKgeraA4GUx1fZQoaAZoCWgPQwhKRWPt72zov5SGlFKUaBVLMmgWR0CoHmwTmGM5dX2UKGgGaAloD0MI/b5/8+LE1b+UhpRSlGgVSzJoFkdAqB4rho/RmnV9lChoBmgJaA9DCPHwngPLEeC/lIaUUpRoFUsyaBZHQKggKRzRx951fZQoaAZoCWgPQwiLUkKwqt7yv5SGlFKUaBVLMmgWR0CoH+ppFkQPdX2UKGgGaAloD0MIETRmEvUC6b+UhpRSlGgVSzJoFkdAqB+oHJLdvnV9lChoBmgJaA9DCJj5Dn7igOO/lIaUUpRoFUsyaBZHQKgfZkq+ajN1ZS4="
|
62 |
+
},
|
63 |
+
"ep_success_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
+
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
+
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
+
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
+
"max_grad_norm": 0.5,
|
74 |
+
"normalize_advantage": false,
|
75 |
+
"observation_space": {
|
76 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
77 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
78 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
79 |
+
"_shape": null,
|
80 |
+
"dtype": null,
|
81 |
+
"_np_random": null
|
82 |
+
},
|
83 |
+
"action_space": {
|
84 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
85 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
86 |
+
"dtype": "float32",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"bounded_below": "[ True True True]",
|
93 |
+
"bounded_above": "[ True True True]",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4
|
97 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04dccdc7c4c281188d9c353cee65f982d95e4c04ce9c76ea8107f60da21aa881
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5f1f831b0dccbb9c638a153097dc3b3443d1456d9fc9ca8220674e40d0b890a
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78482806f5b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78482806a5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689932019903916589, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFlmcPkxiIrzJgxY/FlmcPkxiIrzJgxY/FlmcPkxiIrzJgxY/FlmcPkxiIrzJgxY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATUFnv8eUuj9FhGW+/rDSv5q40L4cyfq9jbUHPxPAZb9TB/Q9sF1Fv2SFmL+Hdmy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWWZw+TGIivMmDFj9E8Lc997cpuuntiD0WWZw+TGIivMmDFj9E8Lc997cpuuntiD0WWZw+TGIivMmDFj9E8Lc997cpuuntiD0WWZw+TGIivMmDFj9E8Lc997cpuuntiD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.30536717 -0.00991113 0.5879484 ]\n [ 0.30536717 -0.00991113 0.5879484 ]\n [ 0.30536717 -0.00991113 0.5879484 ]\n [ 0.30536717 -0.00991113 0.5879484 ]]", "desired_goal": "[[-0.90334016 1.4576653 -0.22413738]\n [-1.6460264 -0.4076584 -0.1224539 ]\n [ 0.530114 -0.89746207 0.11915459]\n [-0.7709608 -1.1915708 -0.9236836 ]]", "observation": "[[ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]\n [ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]\n [ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]\n [ 0.30536717 -0.00991113 0.5879484 0.08981374 -0.00064743 0.06686003]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJc+9PUScIz2jqI0+2jqSPFFghbxhRDM+Zc4BPopJdD3zKqg9NNwxvaBYBT578Uo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09268025 0.03994395 0.27667722]\n [ 0.01785033 -0.01628128 0.17506553]\n [ 0.1267639 0.05964044 0.08211317]\n [-0.04342289 0.13022089 0.1981868 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4jrGFRdH5L+UhpRSlIwBbJRLMowBdJRHQKgCJAymALB1fZQoaAZoCWgPQwiHb2HdePfyv5SGlFKUaBVLMmgWR0CoAeaVD8cddX2UKGgGaAloD0MIK6Vneokx4r+UhpRSlGgVSzJoFkdAqAGk/IKc/nV9lChoBmgJaA9DCI9Rnnk5rPC/lIaUUpRoFUsyaBZHQKgBZEVnEl51fZQoaAZoCWgPQwgdPulEginmv5SGlFKUaBVLMmgWR0CoA+eaa1CxdX2UKGgGaAloD0MIEf+wpUdT67+UhpRSlGgVSzJoFkdAqAOo24uscXV9lChoBmgJaA9DCFzHuOLiKO+/lIaUUpRoFUsyaBZHQKgDZqoqCpZ1fZQoaAZoCWgPQwi/uFSlLS7nv5SGlFKUaBVLMmgWR0CoAyUZm7J5dX2UKGgGaAloD0MIAad38X5c4r+UhpRSlGgVSzJoFkdAqAT1oN/e+HV9lChoBmgJaA9DCMqK4eoACOW/lIaUUpRoFUsyaBZHQKgEtvrnkkt1fZQoaAZoCWgPQwiMnfASnPrfv5SGlFKUaBVLMmgWR0CoBHR6F/QTdX2UKGgGaAloD0MIRIfAkUAD47+UhpRSlGgVSzJoFkdAqAQyvaDf33V9lChoBmgJaA9DCPFiYYicPuS/lIaUUpRoFUsyaBZHQKgGCro4dZJ1fZQoaAZoCWgPQwgYWwhyUELqv5SGlFKUaBVLMmgWR0CoBcwNsnAqdX2UKGgGaAloD0MIiZl9HqM83r+UhpRSlGgVSzJoFkdAqAWJ1LamGnV9lChoBmgJaA9DCMJrlzYcFuW/lIaUUpRoFUsyaBZHQKgFSDPnjhl1fZQoaAZoCWgPQwhbBwd7E4Pyv5SGlFKUaBVLMmgWR0CoBwymQ8wIdX2UKGgGaAloD0MI/BpJgnAF3r+UhpRSlGgVSzJoFkdAqAbN14gRsnV9lChoBmgJaA9DCB8PfXcrS+e/lIaUUpRoFUsyaBZHQKgGi4nWrfd1fZQoaAZoCWgPQwiERrBx/Tvgv5SGlFKUaBVLMmgWR0CoBknGCI1tdX2UKGgGaAloD0MI/ACkNnHy7b+UhpRSlGgVSzJoFkdAqAgi4vvjO3V9lChoBmgJaA9DCIqO5PIf0ua/lIaUUpRoFUsyaBZHQKgH5F0gbId1fZQoaAZoCWgPQwgk0csollvUv5SGlFKUaBVLMmgWR0CoB6IkAxSHdX2UKGgGaAloD0MIzPEKRE/K17+UhpRSlGgVSzJoFkdAqAdgZGax5nV9lChoBmgJaA9DCJ/KaU/JOe+/lIaUUpRoFUsyaBZHQKgJKZKFqSJ1fZQoaAZoCWgPQwiI8gUtJODkv5SGlFKUaBVLMmgWR0CoCOrkKeCkdX2UKGgGaAloD0MIX1/rUiM0+b+UhpRSlGgVSzJoFkdAqAioqG1x83V9lChoBmgJaA9DCAkbnl4py92/lIaUUpRoFUsyaBZHQKgIZ4JNTLp1fZQoaAZoCWgPQwgZ/tMNFPjkv5SGlFKUaBVLMmgWR0CoCja5f+judX2UKGgGaAloD0MIvALRkzIJAMCUhpRSlGgVSzJoFkdAqAn4DDCP63V9lChoBmgJaA9DCFa2D3nLVey/lIaUUpRoFUsyaBZHQKgJtbVz6rN1fZQoaAZoCWgPQwjDRe7p6s70v5SGlFKUaBVLMmgWR0CoCXQHqu8sdX2UKGgGaAloD0MI8wLso1NX5b+UhpRSlGgVSzJoFkdAqAtHh60IC3V9lChoBmgJaA9DCI0o7Q2+MPS/lIaUUpRoFUsyaBZHQKgLCa4MF2V1fZQoaAZoCWgPQwi9xFimXyLQv5SGlFKUaBVLMmgWR0CoCsgN5MURdX2UKGgGaAloD0MIy7+WV6438L+UhpRSlGgVSzJoFkdAqAqGY4Qz13V9lChoBmgJaA9DCDBMpgpGJeK/lIaUUpRoFUsyaBZHQKgMZO6/Zdx1fZQoaAZoCWgPQwhRE30+yojcv5SGlFKUaBVLMmgWR0CoDCZMDfWMdX2UKGgGaAloD0MIS+guibMi4L+UhpRSlGgVSzJoFkdAqAvkEgW8AnV9lChoBmgJaA9DCMdKzLOS1vW/lIaUUpRoFUsyaBZHQKgLoo73fyh1fZQoaAZoCWgPQwj5hsJn6+DMv5SGlFKUaBVLMmgWR0CoDW/fO2RadX2UKGgGaAloD0MIFsCUgQNa1L+UhpRSlGgVSzJoFkdAqA0xCQcPv3V9lChoBmgJaA9DCD2dK0oJwd6/lIaUUpRoFUsyaBZHQKgM7t/nW8R1fZQoaAZoCWgPQwh5d2SsNv/Wv5SGlFKUaBVLMmgWR0CoDK1T72tddX2UKGgGaAloD0MIxcVRuYla47+UhpRSlGgVSzJoFkdAqA56jJuEVXV9lChoBmgJaA9DCGqHvyZr1Oy/lIaUUpRoFUsyaBZHQKgOO/lhgE51fZQoaAZoCWgPQwjlDTDzHXziv5SGlFKUaBVLMmgWR0CoDfmseXAudX2UKGgGaAloD0MI9G4sKAzK57+UhpRSlGgVSzJoFkdAqA24NZvDQHV9lChoBmgJaA9DCNCZtKm6R9m/lIaUUpRoFUsyaBZHQKgPpuejEeh1fZQoaAZoCWgPQwj3j4XoEDjTv5SGlFKUaBVLMmgWR0CoD2hKL877dX2UKGgGaAloD0MIfo/66xUW37+UhpRSlGgVSzJoFkdAqA8l2LYPG3V9lChoBmgJaA9DCIG0/wHW6vS/lIaUUpRoFUsyaBZHQKgO5PDYRNB1fZQoaAZoCWgPQwhx4qsdxbnlv5SGlFKUaBVLMmgWR0CoELdcbBGhdX2UKGgGaAloD0MIbcmqCDcZ2L+UhpRSlGgVSzJoFkdAqBB4omXw9nV9lChoBmgJaA9DCFWEm4wqw+2/lIaUUpRoFUsyaBZHQKgQNkkrwvx1fZQoaAZoCWgPQwgDQBU3bjHWv5SGlFKUaBVLMmgWR0CoD/SkKu0UdX2UKGgGaAloD0MIB9MwfERM47+UhpRSlGgVSzJoFkdAqBHtRFZxJnV9lChoBmgJaA9DCIRLx5xn7OS/lIaUUpRoFUsyaBZHQKgRrpdKNAF1fZQoaAZoCWgPQwhXJvxSP+/hv5SGlFKUaBVLMmgWR0CoEWzFVDKHdX2UKGgGaAloD0MIAmVTrvCu77+UhpRSlGgVSzJoFkdAqBErDIikf3V9lChoBmgJaA9DCDYiGAeXTvK/lIaUUpRoFUsyaBZHQKgS+86FM7F1fZQoaAZoCWgPQwh/wW7Ytqjsv5SGlFKUaBVLMmgWR0CoEr1Z1V5sdX2UKGgGaAloD0MISdv4E5UN3r+UhpRSlGgVSzJoFkdAqBJ7LZBcA3V9lChoBmgJaA9DCJmAXyNJkOW/lIaUUpRoFUsyaBZHQKgSOXSBshx1fZQoaAZoCWgPQwhz843onnXZv5SGlFKUaBVLMmgWR0CoFA/igkC4dX2UKGgGaAloD0MIh97i4T0H77+UhpRSlGgVSzJoFkdAqBPQ8W9DhXV9lChoBmgJaA9DCGjNj7+0KOm/lIaUUpRoFUsyaBZHQKgTjpGnXNF1fZQoaAZoCWgPQwg+zcmLTMDkv5SGlFKUaBVLMmgWR0CoE0zQNTcZdX2UKGgGaAloD0MICfoLPWJ067+UhpRSlGgVSzJoFkdAqBVSqfe1r3V9lChoBmgJaA9DCHHl7J3R1ue/lIaUUpRoFUsyaBZHQKgVFNlAeJZ1fZQoaAZoCWgPQwhtWb4uw3/hv5SGlFKUaBVLMmgWR0CoFNKBVdX1dX2UKGgGaAloD0MI4+E9B5Yj6b+UhpRSlGgVSzJoFkdAqBSQvcrRSnV9lChoBmgJaA9DCHf4a7JGPdO/lIaUUpRoFUsyaBZHQKgWZqyGBWh1fZQoaAZoCWgPQwix3xPrVPnav5SGlFKUaBVLMmgWR0CoFigN5MURdX2UKGgGaAloD0MIxAlMp3Xb9r+UhpRSlGgVSzJoFkdAqBXlk6Lfk3V9lChoBmgJaA9DCIaQ8/4/Tu6/lIaUUpRoFUsyaBZHQKgVo8JUo8Z1fZQoaAZoCWgPQwi+LsN/ugHqv5SGlFKUaBVLMmgWR0CoF4+3pfQbdX2UKGgGaAloD0MIAW4WLxZG8L+UhpRSlGgVSzJoFkdAqBdRH/cWTHV9lChoBmgJaA9DCAVvSKMCp+W/lIaUUpRoFUsyaBZHQKgXDp5eJHl1fZQoaAZoCWgPQwgP0egOYuflv5SGlFKUaBVLMmgWR0CoFszK1XvIdX2UKGgGaAloD0MIqoB7nj9t07+UhpRSlGgVSzJoFkdAqBkzgCOmznV9lChoBmgJaA9DCAbVBieiX+K/lIaUUpRoFUsyaBZHQKgY9aCcwxp1fZQoaAZoCWgPQwgAAAAAAADhv5SGlFKUaBVLMmgWR0CoGLQRGtp3dX2UKGgGaAloD0MIkzoBTYQN37+UhpRSlGgVSzJoFkdAqBhy5sj3VXV9lChoBmgJaA9DCKKakqzD0ey/lIaUUpRoFUsyaBZHQKga5R/mT1V1fZQoaAZoCWgPQwgaMEj6tArwv5SGlFKUaBVLMmgWR0CoGqeHBUJfdX2UKGgGaAloD0MIqFX0h2Ye5L+UhpRSlGgVSzJoFkdAqBpmSU1Q7HV9lChoBmgJaA9DCK5nCMcse+6/lIaUUpRoFUsyaBZHQKgaJb8FY+11fZQoaAZoCWgPQwim1CXjGMnKv5SGlFKUaBVLMmgWR0CoHPv91loUdX2UKGgGaAloD0MIklhS7j7H0r+UhpRSlGgVSzJoFkdAqBy+dqcmSnV9lChoBmgJaA9DCIfAkUCDTe6/lIaUUpRoFUsyaBZHQKgcfvNNahZ1fZQoaAZoCWgPQwi3ek563/jlv5SGlFKUaBVLMmgWR0CoHD4vvjOtdX2UKGgGaAloD0MInStKCcGq2r+UhpRSlGgVSzJoFkdAqB7q+BYms3V9lChoBmgJaA9DCAyuuaP/5eO/lIaUUpRoFUsyaBZHQKgeraA4GUx1fZQoaAZoCWgPQwhKRWPt72zov5SGlFKUaBVLMmgWR0CoHmwTmGM5dX2UKGgGaAloD0MI/b5/8+LE1b+UhpRSlGgVSzJoFkdAqB4rho/RmnV9lChoBmgJaA9DCPHwngPLEeC/lIaUUpRoFUsyaBZHQKggKRzRx951fZQoaAZoCWgPQwiLUkKwqt7yv5SGlFKUaBVLMmgWR0CoH+ppFkQPdX2UKGgGaAloD0MIETRmEvUC6b+UhpRSlGgVSzJoFkdAqB+oHJLdvnV9lChoBmgJaA9DCJj5Dn7igOO/lIaUUpRoFUsyaBZHQKgfZkq+ajN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (293 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.5766107180621475, "std_reward": 0.21793575189336192, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-21T10:36:07.632097"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88527b8f6d4f032ea05e5bca805f0ede3f4f53a0caf6356400d4e58a5fc6d739
|
3 |
+
size 2387
|