File size: 2,120 Bytes
a30891d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: intit_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# intit_model
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2486
- Wer: 0.4348
- Cer: 0.9047
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.9753 | 20.0 | 100 | 1.3804 | 0.5072 | 0.9054 |
| 0.5395 | 40.0 | 200 | 1.5495 | 0.4444 | 0.9062 |
| 0.3735 | 60.0 | 300 | 1.7729 | 0.4396 | 0.9056 |
| 0.2427 | 80.0 | 400 | 1.9016 | 0.4348 | 0.9063 |
| 0.2389 | 100.0 | 500 | 2.0569 | 0.4348 | 0.9061 |
| 0.1822 | 120.0 | 600 | 2.0684 | 0.4300 | 0.9050 |
| 0.1578 | 140.0 | 700 | 2.1332 | 0.4396 | 0.9049 |
| 0.1547 | 160.0 | 800 | 2.2138 | 0.4444 | 0.9047 |
| 0.1807 | 180.0 | 900 | 2.2467 | 0.4348 | 0.9047 |
| 0.1427 | 200.0 | 1000 | 2.2486 | 0.4348 | 0.9047 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|