Your-Cheese
commited on
Commit
•
856bb69
1
Parent(s):
5097409
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.75 +/- 0.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aa433ffecde66b3cc87c4d636241578d121018c60a124e26be813510e2f5a4d
|
3 |
+
size 109283
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7360c3e5e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f7360c37c60>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1677123875224609971,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUYjAPmGzDDp7MQs/UYjAPmGzDDp7MQs/UYjAPmGzDDp7MQs/UYjAPmGzDDp7MQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI16+P1vpP781nIa/4nOHP778DT+M+T0/a8XPv+O4eb8xZ4w/AcN7PxKckL/JGai9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABRiMA+YbMMOnsxCz9sMUy8DieTN7TOUrtRiMA+YbMMOnsxCz9sMUy8DieTN7TOUrtRiMA+YbMMOnsxCz9sMUy8DieTN7TOUrtRiMA+YbMMOnsxCz9sMUy8DieTN7TOUruUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[3.7604001e-01 5.3673057e-04 5.4372376e-01]\n [3.7604001e-01 5.3673057e-04 5.4372376e-01]\n [3.7604001e-01 5.3673057e-04 5.4372376e-01]\n [3.7604001e-01 5.3673057e-04 5.4372376e-01]]",
|
60 |
+
"desired_goal": "[[ 1.4872478 -0.7496545 -1.0516421 ]\n [ 1.058224 0.5546378 0.74208903]\n [-1.6232122 -0.9754774 1.0968992 ]\n [ 0.9834443 -1.1297629 -0.08208043]]",
|
61 |
+
"observation": "[[ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]\n [ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]\n [ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]\n [ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA50AIvpv7Dj7LAAM+qofIOyWKeT2pHWY+TmGgPaMCXb0vThk+6N4jvVhzAr70eKI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.13306008 0.13963167 0.12793271]\n [ 0.00611969 0.06092276 0.22472252]\n [ 0.07831059 -0.05395759 0.14971231]\n [-0.0400075 -0.12739313 0.07933226]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": true,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5DEDlfHv97+UhpRSlIwBbJRLMowBdJRHQKc+1Cpm29d1fZQoaAZoCWgPQwgEdjV5yur3v5SGlFKUaBVLMmgWR0CnPlD8+A3DdX2UKGgGaAloD0MIIjXtYprp9r+UhpRSlGgVSzJoFkdApz3CZ2IO6XV9lChoBmgJaA9DCHufqkIDsfa/lIaUUpRoFUsyaBZHQKc9S+j/Mnt1fZQoaAZoCWgPQwj/0MyTa0r9v5SGlFKUaBVLMmgWR0CnP+KvNeMRdX2UKGgGaAloD0MI86rOaoG9/r+UhpRSlGgVSzJoFkdApz9fg5zYEnV9lChoBmgJaA9DCGn+mNamcfi/lIaUUpRoFUsyaBZHQKc+0U5+6RR1fZQoaAZoCWgPQwjD8XwG1Jv7v5SGlFKUaBVLMmgWR0CnPlrsa86FdX2UKGgGaAloD0MIsMka9RBN+r+UhpRSlGgVSzJoFkdAp0Dq04R283V9lChoBmgJaA9DCMr9DkWBvgHAlIaUUpRoFUsyaBZHQKdAZ6ol2Nh1fZQoaAZoCWgPQwjTMlLvqdz6v5SGlFKUaBVLMmgWR0CnP9kkjX4CdX2UKGgGaAloD0MIacai6exk97+UhpRSlGgVSzJoFkdApz9ip97Wu3V9lChoBmgJaA9DCHQprir77gHAlIaUUpRoFUsyaBZHQKdB6syzoll1fZQoaAZoCWgPQwhaKQRyiWMAwJSGlFKUaBVLMmgWR0CnQWfr0J4TdX2UKGgGaAloD0MIBmhbzTrj97+UhpRSlGgVSzJoFkdAp0DZaNdZ73V9lChoBmgJaA9DCK2kFd9Q+Pa/lIaUUpRoFUsyaBZHQKdAYwPiDNB1fZQoaAZoCWgPQwgIc7uX++T5v5SGlFKUaBVLMmgWR0CnQvETYdyUdX2UKGgGaAloD0MI5BJHHogs+7+UhpRSlGgVSzJoFkdAp0Jt2NedCnV9lChoBmgJaA9DCGTL8nUZPvy/lIaUUpRoFUsyaBZHQKdB365XlsB1fZQoaAZoCWgPQwi86ZYd4h/5v5SGlFKUaBVLMmgWR0CnQWkx7AtWdX2UKGgGaAloD0MIQgqeQq7U9L+UhpRSlGgVSzJoFkdAp0R44uK4x3V9lChoBmgJaA9DCEPGo1TC0/i/lIaUUpRoFUsyaBZHQKdD9nNgSe11fZQoaAZoCWgPQwiOzCN/MDD6v5SGlFKUaBVLMmgWR0CnQ2jgZTAGdX2UKGgGaAloD0MIdqVlpN6T+b+UhpRSlGgVSzJoFkdAp0LzMHKOk3V9lChoBmgJaA9DCL6iW6/pwf2/lIaUUpRoFUsyaBZHQKdGJpqREF51fZQoaAZoCWgPQwiDwMqhRTb4v5SGlFKUaBVLMmgWR0CnRaQtrbg1dX2UKGgGaAloD0MIrOP4odLI/L+UhpRSlGgVSzJoFkdAp0UWQyRB/3V9lChoBmgJaA9DCHEbDeAtUPy/lIaUUpRoFUsyaBZHQKdEoHdGiHt1fZQoaAZoCWgPQwhXtaSjHMz6v5SGlFKUaBVLMmgWR0CnR75Bsyi3dX2UKGgGaAloD0MIQl96+3NR+7+UhpRSlGgVSzJoFkdAp0c8Oqebu3V9lChoBmgJaA9DCFjIXBlUW/e/lIaUUpRoFUsyaBZHQKdGrs/IKdB1fZQoaAZoCWgPQwjqd2FrtvL5v5SGlFKUaBVLMmgWR0CnRjnHmzSkdX2UKGgGaAloD0MIpivYRjzZ+b+UhpRSlGgVSzJoFkdAp0l9PJq7AnV9lChoBmgJaA9DCJaWkXpPpfe/lIaUUpRoFUsyaBZHQKdI+sK9f1J1fZQoaAZoCWgPQwgYtJCA0eX8v5SGlFKUaBVLMmgWR0CnSGzZYgaFdX2UKGgGaAloD0MIOBWpMLaQ+b+UhpRSlGgVSzJoFkdAp0f3MB6rvXV9lChoBmgJaA9DCFr2JLA5h/i/lIaUUpRoFUsyaBZHQKdLTjx0+1V1fZQoaAZoCWgPQwipwMk2cEf5v5SGlFKUaBVLMmgWR0CnSsvP1L8KdX2UKGgGaAloD0MIsFWCxeGM+r+UhpRSlGgVSzJoFkdAp0o99nbqQnV9lChoBmgJaA9DCHEDPj+MUPa/lIaUUpRoFUsyaBZHQKdJycjqv/11fZQoaAZoCWgPQwjrjO+LS1X4v5SGlFKUaBVLMmgWR0CnTTAZbY9QdX2UKGgGaAloD0MI/Knx0k0iAsCUhpRSlGgVSzJoFkdAp0ytuJk5InV9lChoBmgJaA9DCDc4Ef3aOgPAlIaUUpRoFUsyaBZHQKdMH9lVcUx1fZQoaAZoCWgPQwjObFfogyX+v5SGlFKUaBVLMmgWR0CnS6pTl1bJdX2UKGgGaAloD0MIgLqBAu9k/7+UhpRSlGgVSzJoFkdAp075cxCY1HV9lChoBmgJaA9DCBdlNsgkowLAlIaUUpRoFUsyaBZHQKdOdz2exwB1fZQoaAZoCWgPQwgv98lRgOj4v5SGlFKUaBVLMmgWR0CnTelbFCLNdX2UKGgGaAloD0MIgJvFi4UhAMCUhpRSlGgVSzJoFkdAp01zoEB8yHV9lChoBmgJaA9DCAZkr3d/HADAlIaUUpRoFUsyaBZHQKdQJ9a2Wpt1fZQoaAZoCWgPQwhs0Jfe/tz+v5SGlFKUaBVLMmgWR0CnT6UQ9RrKdX2UKGgGaAloD0MITwZHyauz+r+UhpRSlGgVSzJoFkdAp08W7QLNOnV9lChoBmgJaA9DCIZUUbzKmv+/lIaUUpRoFUsyaBZHQKdOoRKYiPh1fZQoaAZoCWgPQwgwTKYKRmX6v5SGlFKUaBVLMmgWR0CnUT81Gb1AdX2UKGgGaAloD0MIS8tIvafy+r+UhpRSlGgVSzJoFkdAp1C8cdYGMXV9lChoBmgJaA9DCOygEtcxrv6/lIaUUpRoFUsyaBZHQKdQLi6xxDN1fZQoaAZoCWgPQwi0kIDR5U3+v5SGlFKUaBVLMmgWR0CnT7e8wpOOdX2UKGgGaAloD0MIGa95VWd1/7+UhpRSlGgVSzJoFkdAp1JkhV2ic3V9lChoBmgJaA9DCHNKQEzCxfy/lIaUUpRoFUsyaBZHQKdR4XC0ngJ1fZQoaAZoCWgPQwixw5j09xL6v5SGlFKUaBVLMmgWR0CnUVLcCYCydX2UKGgGaAloD0MIn8iTpGtm/r+UhpRSlGgVSzJoFkdAp1DcZBLPEHV9lChoBmgJaA9DCC1CsRU0rfi/lIaUUpRoFUsyaBZHQKdThrwe/6B1fZQoaAZoCWgPQwgMzXUaaan3v5SGlFKUaBVLMmgWR0CnUwPttyggdX2UKGgGaAloD0MIJsYy/RLx/b+UhpRSlGgVSzJoFkdAp1J12FFlTXV9lChoBmgJaA9DCJ2+nq9ZLv+/lIaUUpRoFUsyaBZHQKdR/8Kohpx1fZQoaAZoCWgPQwhyTYHMzqL3v5SGlFKUaBVLMmgWR0CnVL2NFSbZdX2UKGgGaAloD0MI9wZfmEyV+b+UhpRSlGgVSzJoFkdAp1Q6a5PM0XV9lChoBmgJaA9DCHb7rDJTGve/lIaUUpRoFUsyaBZHQKdTq89Oh011fZQoaAZoCWgPQwh4Xio25rX6v5SGlFKUaBVLMmgWR0CnUzVb7j1gdX2UKGgGaAloD0MIEHUfgNRm+7+UhpRSlGgVSzJoFkdAp1XE4R28qXV9lChoBmgJaA9DCH7JxoMt1gDAlIaUUpRoFUsyaBZHQKdVQkiUxEh1fZQoaAZoCWgPQwj4bB0c7I0AwJSGlFKUaBVLMmgWR0CnVLRBmf5DdX2UKGgGaAloD0MIsvZ3tkcv97+UhpRSlGgVSzJoFkdAp1Q+fEn9enV9lChoBmgJaA9DCPz/OGHCKPu/lIaUUpRoFUsyaBZHQKdW4lVtGd91fZQoaAZoCWgPQwjpDmJnCp38v5SGlFKUaBVLMmgWR0CnVl8ebNKRdX2UKGgGaAloD0MIDkqYafvX+r+UhpRSlGgVSzJoFkdAp1XQjlgc+HV9lChoBmgJaA9DCJjaUgd5ffy/lIaUUpRoFUsyaBZHQKdVWh11W811fZQoaAZoCWgPQwjZ0TjU74L6v5SGlFKUaBVLMmgWR0CnV+icG1QZdX2UKGgGaAloD0MIaQJFLGI4AMCUhpRSlGgVSzJoFkdAp1dleMQ2/HV9lChoBmgJaA9DCAe3tYXnpQHAlIaUUpRoFUsyaBZHQKdW1vx6OYJ1fZQoaAZoCWgPQwgdsKvJU5b5v5SGlFKUaBVLMmgWR0CnVmCOWBz4dX2UKGgGaAloD0MIFCLgEKqU/7+UhpRSlGgVSzJoFkdAp1jl+9allHV9lChoBmgJaA9DCHMvMCsUafq/lIaUUpRoFUsyaBZHQKdYYsvqTr51fZQoaAZoCWgPQwiZfol469wCwJSGlFKUaBVLMmgWR0CnV9QswtaqdX2UKGgGaAloD0MILqwb746M+7+UhpRSlGgVSzJoFkdAp1dduHerMnV9lChoBmgJaA9DCH9skh/xa/a/lIaUUpRoFUsyaBZHQKdaBRu0kW11fZQoaAZoCWgPQwhKCcGqern2v5SGlFKUaBVLMmgWR0CnWYH1vl2edX2UKGgGaAloD0MIup9TkJ/N/b+UhpRSlGgVSzJoFkdAp1jzYK6WgXV9lChoBmgJaA9DCN+I7lnXKP+/lIaUUpRoFUsyaBZHQKdYfPpIMBp1fZQoaAZoCWgPQwitF0M50Q4AwJSGlFKUaBVLMmgWR0CnWxIW56MSdX2UKGgGaAloD0MI61Ij9DM1+b+UhpRSlGgVSzJoFkdAp1qPB1s+FHV9lChoBmgJaA9DCGlznNuE+/6/lIaUUpRoFUsyaBZHQKdaAHSnccl1fZQoaAZoCWgPQwi1N/jCZKr8v5SGlFKUaBVLMmgWR0CnWYoBRyfddX2UKGgGaAloD0MIwY9q2O/J+b+UhpRSlGgVSzJoFkdAp1wXIhhYvHV9lChoBmgJaA9DCFacai3MAv2/lIaUUpRoFUsyaBZHQKdblGXokiV1fZQoaAZoCWgPQwhJgJpatpb+v5SGlFKUaBVLMmgWR0CnWwX4bjtHdX2UKGgGaAloD0MIIo0KnGzD+r+UhpRSlGgVSzJoFkdAp1qPe7+T/3V9lChoBmgJaA9DCFeyYyMQr/u/lIaUUpRoFUsyaBZHQKddF7el9Bt1fZQoaAZoCWgPQwhF8pVASowCwJSGlFKUaBVLMmgWR0CnXJSGahHtdX2UKGgGaAloD0MI6ITQQZfw+b+UhpRSlGgVSzJoFkdAp1wF8gIQe3V9lChoBmgJaA9DCNXL7zSZsfm/lIaUUpRoFUsyaBZHQKdbj4eLehx1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e31c84554c30a4e825ac630d6326edb7f6baea947773914c35b9f55621caf849
|
3 |
+
size 45310
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f6988f200196e35e51c25c53e5277ddc529821741fd9fa8612834ad94a9b62a
|
3 |
+
size 46590
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7360c3e5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7360c37c60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677123875224609971, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUYjAPmGzDDp7MQs/UYjAPmGzDDp7MQs/UYjAPmGzDDp7MQs/UYjAPmGzDDp7MQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI16+P1vpP781nIa/4nOHP778DT+M+T0/a8XPv+O4eb8xZ4w/AcN7PxKckL/JGai9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABRiMA+YbMMOnsxCz9sMUy8DieTN7TOUrtRiMA+YbMMOnsxCz9sMUy8DieTN7TOUrtRiMA+YbMMOnsxCz9sMUy8DieTN7TOUrtRiMA+YbMMOnsxCz9sMUy8DieTN7TOUruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[3.7604001e-01 5.3673057e-04 5.4372376e-01]\n [3.7604001e-01 5.3673057e-04 5.4372376e-01]\n [3.7604001e-01 5.3673057e-04 5.4372376e-01]\n [3.7604001e-01 5.3673057e-04 5.4372376e-01]]", "desired_goal": "[[ 1.4872478 -0.7496545 -1.0516421 ]\n [ 1.058224 0.5546378 0.74208903]\n [-1.6232122 -0.9754774 1.0968992 ]\n [ 0.9834443 -1.1297629 -0.08208043]]", "observation": "[[ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]\n [ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]\n [ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]\n [ 3.7604001e-01 5.3673057e-04 5.4372376e-01 -1.2462955e-02\n 1.7541952e-05 -3.2166662e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA50AIvpv7Dj7LAAM+qofIOyWKeT2pHWY+TmGgPaMCXb0vThk+6N4jvVhzAr70eKI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13306008 0.13963167 0.12793271]\n [ 0.00611969 0.06092276 0.22472252]\n [ 0.07831059 -0.05395759 0.14971231]\n [-0.0400075 -0.12739313 0.07933226]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5DEDlfHv97+UhpRSlIwBbJRLMowBdJRHQKc+1Cpm29d1fZQoaAZoCWgPQwgEdjV5yur3v5SGlFKUaBVLMmgWR0CnPlD8+A3DdX2UKGgGaAloD0MIIjXtYprp9r+UhpRSlGgVSzJoFkdApz3CZ2IO6XV9lChoBmgJaA9DCHufqkIDsfa/lIaUUpRoFUsyaBZHQKc9S+j/Mnt1fZQoaAZoCWgPQwj/0MyTa0r9v5SGlFKUaBVLMmgWR0CnP+KvNeMRdX2UKGgGaAloD0MI86rOaoG9/r+UhpRSlGgVSzJoFkdApz9fg5zYEnV9lChoBmgJaA9DCGn+mNamcfi/lIaUUpRoFUsyaBZHQKc+0U5+6RR1fZQoaAZoCWgPQwjD8XwG1Jv7v5SGlFKUaBVLMmgWR0CnPlrsa86FdX2UKGgGaAloD0MIsMka9RBN+r+UhpRSlGgVSzJoFkdAp0Dq04R283V9lChoBmgJaA9DCMr9DkWBvgHAlIaUUpRoFUsyaBZHQKdAZ6ol2Nh1fZQoaAZoCWgPQwjTMlLvqdz6v5SGlFKUaBVLMmgWR0CnP9kkjX4CdX2UKGgGaAloD0MIacai6exk97+UhpRSlGgVSzJoFkdApz9ip97Wu3V9lChoBmgJaA9DCHQprir77gHAlIaUUpRoFUsyaBZHQKdB6syzoll1fZQoaAZoCWgPQwhaKQRyiWMAwJSGlFKUaBVLMmgWR0CnQWfr0J4TdX2UKGgGaAloD0MIBmhbzTrj97+UhpRSlGgVSzJoFkdAp0DZaNdZ73V9lChoBmgJaA9DCK2kFd9Q+Pa/lIaUUpRoFUsyaBZHQKdAYwPiDNB1fZQoaAZoCWgPQwgIc7uX++T5v5SGlFKUaBVLMmgWR0CnQvETYdyUdX2UKGgGaAloD0MI5BJHHogs+7+UhpRSlGgVSzJoFkdAp0Jt2NedCnV9lChoBmgJaA9DCGTL8nUZPvy/lIaUUpRoFUsyaBZHQKdB365XlsB1fZQoaAZoCWgPQwi86ZYd4h/5v5SGlFKUaBVLMmgWR0CnQWkx7AtWdX2UKGgGaAloD0MIQgqeQq7U9L+UhpRSlGgVSzJoFkdAp0R44uK4x3V9lChoBmgJaA9DCEPGo1TC0/i/lIaUUpRoFUsyaBZHQKdD9nNgSe11fZQoaAZoCWgPQwiOzCN/MDD6v5SGlFKUaBVLMmgWR0CnQ2jgZTAGdX2UKGgGaAloD0MIdqVlpN6T+b+UhpRSlGgVSzJoFkdAp0LzMHKOk3V9lChoBmgJaA9DCL6iW6/pwf2/lIaUUpRoFUsyaBZHQKdGJpqREF51fZQoaAZoCWgPQwiDwMqhRTb4v5SGlFKUaBVLMmgWR0CnRaQtrbg1dX2UKGgGaAloD0MIrOP4odLI/L+UhpRSlGgVSzJoFkdAp0UWQyRB/3V9lChoBmgJaA9DCHEbDeAtUPy/lIaUUpRoFUsyaBZHQKdEoHdGiHt1fZQoaAZoCWgPQwhXtaSjHMz6v5SGlFKUaBVLMmgWR0CnR75Bsyi3dX2UKGgGaAloD0MIQl96+3NR+7+UhpRSlGgVSzJoFkdAp0c8Oqebu3V9lChoBmgJaA9DCFjIXBlUW/e/lIaUUpRoFUsyaBZHQKdGrs/IKdB1fZQoaAZoCWgPQwjqd2FrtvL5v5SGlFKUaBVLMmgWR0CnRjnHmzSkdX2UKGgGaAloD0MIpivYRjzZ+b+UhpRSlGgVSzJoFkdAp0l9PJq7AnV9lChoBmgJaA9DCJaWkXpPpfe/lIaUUpRoFUsyaBZHQKdI+sK9f1J1fZQoaAZoCWgPQwgYtJCA0eX8v5SGlFKUaBVLMmgWR0CnSGzZYgaFdX2UKGgGaAloD0MIOBWpMLaQ+b+UhpRSlGgVSzJoFkdAp0f3MB6rvXV9lChoBmgJaA9DCFr2JLA5h/i/lIaUUpRoFUsyaBZHQKdLTjx0+1V1fZQoaAZoCWgPQwipwMk2cEf5v5SGlFKUaBVLMmgWR0CnSsvP1L8KdX2UKGgGaAloD0MIsFWCxeGM+r+UhpRSlGgVSzJoFkdAp0o99nbqQnV9lChoBmgJaA9DCHEDPj+MUPa/lIaUUpRoFUsyaBZHQKdJycjqv/11fZQoaAZoCWgPQwjrjO+LS1X4v5SGlFKUaBVLMmgWR0CnTTAZbY9QdX2UKGgGaAloD0MI/Knx0k0iAsCUhpRSlGgVSzJoFkdAp0ytuJk5InV9lChoBmgJaA9DCDc4Ef3aOgPAlIaUUpRoFUsyaBZHQKdMH9lVcUx1fZQoaAZoCWgPQwjObFfogyX+v5SGlFKUaBVLMmgWR0CnS6pTl1bJdX2UKGgGaAloD0MIgLqBAu9k/7+UhpRSlGgVSzJoFkdAp075cxCY1HV9lChoBmgJaA9DCBdlNsgkowLAlIaUUpRoFUsyaBZHQKdOdz2exwB1fZQoaAZoCWgPQwgv98lRgOj4v5SGlFKUaBVLMmgWR0CnTelbFCLNdX2UKGgGaAloD0MIgJvFi4UhAMCUhpRSlGgVSzJoFkdAp01zoEB8yHV9lChoBmgJaA9DCAZkr3d/HADAlIaUUpRoFUsyaBZHQKdQJ9a2Wpt1fZQoaAZoCWgPQwhs0Jfe/tz+v5SGlFKUaBVLMmgWR0CnT6UQ9RrKdX2UKGgGaAloD0MITwZHyauz+r+UhpRSlGgVSzJoFkdAp08W7QLNOnV9lChoBmgJaA9DCIZUUbzKmv+/lIaUUpRoFUsyaBZHQKdOoRKYiPh1fZQoaAZoCWgPQwgwTKYKRmX6v5SGlFKUaBVLMmgWR0CnUT81Gb1AdX2UKGgGaAloD0MIS8tIvafy+r+UhpRSlGgVSzJoFkdAp1C8cdYGMXV9lChoBmgJaA9DCOygEtcxrv6/lIaUUpRoFUsyaBZHQKdQLi6xxDN1fZQoaAZoCWgPQwi0kIDR5U3+v5SGlFKUaBVLMmgWR0CnT7e8wpOOdX2UKGgGaAloD0MIGa95VWd1/7+UhpRSlGgVSzJoFkdAp1JkhV2ic3V9lChoBmgJaA9DCHNKQEzCxfy/lIaUUpRoFUsyaBZHQKdR4XC0ngJ1fZQoaAZoCWgPQwixw5j09xL6v5SGlFKUaBVLMmgWR0CnUVLcCYCydX2UKGgGaAloD0MIn8iTpGtm/r+UhpRSlGgVSzJoFkdAp1DcZBLPEHV9lChoBmgJaA9DCC1CsRU0rfi/lIaUUpRoFUsyaBZHQKdThrwe/6B1fZQoaAZoCWgPQwgMzXUaaan3v5SGlFKUaBVLMmgWR0CnUwPttyggdX2UKGgGaAloD0MIJsYy/RLx/b+UhpRSlGgVSzJoFkdAp1J12FFlTXV9lChoBmgJaA9DCJ2+nq9ZLv+/lIaUUpRoFUsyaBZHQKdR/8Kohpx1fZQoaAZoCWgPQwhyTYHMzqL3v5SGlFKUaBVLMmgWR0CnVL2NFSbZdX2UKGgGaAloD0MI9wZfmEyV+b+UhpRSlGgVSzJoFkdAp1Q6a5PM0XV9lChoBmgJaA9DCHb7rDJTGve/lIaUUpRoFUsyaBZHQKdTq89Oh011fZQoaAZoCWgPQwh4Xio25rX6v5SGlFKUaBVLMmgWR0CnUzVb7j1gdX2UKGgGaAloD0MIEHUfgNRm+7+UhpRSlGgVSzJoFkdAp1XE4R28qXV9lChoBmgJaA9DCH7JxoMt1gDAlIaUUpRoFUsyaBZHQKdVQkiUxEh1fZQoaAZoCWgPQwj4bB0c7I0AwJSGlFKUaBVLMmgWR0CnVLRBmf5DdX2UKGgGaAloD0MIsvZ3tkcv97+UhpRSlGgVSzJoFkdAp1Q+fEn9enV9lChoBmgJaA9DCPz/OGHCKPu/lIaUUpRoFUsyaBZHQKdW4lVtGd91fZQoaAZoCWgPQwjpDmJnCp38v5SGlFKUaBVLMmgWR0CnVl8ebNKRdX2UKGgGaAloD0MIDkqYafvX+r+UhpRSlGgVSzJoFkdAp1XQjlgc+HV9lChoBmgJaA9DCJjaUgd5ffy/lIaUUpRoFUsyaBZHQKdVWh11W811fZQoaAZoCWgPQwjZ0TjU74L6v5SGlFKUaBVLMmgWR0CnV+icG1QZdX2UKGgGaAloD0MIaQJFLGI4AMCUhpRSlGgVSzJoFkdAp1dleMQ2/HV9lChoBmgJaA9DCAe3tYXnpQHAlIaUUpRoFUsyaBZHQKdW1vx6OYJ1fZQoaAZoCWgPQwgdsKvJU5b5v5SGlFKUaBVLMmgWR0CnVmCOWBz4dX2UKGgGaAloD0MIFCLgEKqU/7+UhpRSlGgVSzJoFkdAp1jl+9allHV9lChoBmgJaA9DCHMvMCsUafq/lIaUUpRoFUsyaBZHQKdYYsvqTr51fZQoaAZoCWgPQwiZfol469wCwJSGlFKUaBVLMmgWR0CnV9QswtaqdX2UKGgGaAloD0MILqwb746M+7+UhpRSlGgVSzJoFkdAp1dduHerMnV9lChoBmgJaA9DCH9skh/xa/a/lIaUUpRoFUsyaBZHQKdaBRu0kW11fZQoaAZoCWgPQwhKCcGqern2v5SGlFKUaBVLMmgWR0CnWYH1vl2edX2UKGgGaAloD0MIup9TkJ/N/b+UhpRSlGgVSzJoFkdAp1jzYK6WgXV9lChoBmgJaA9DCN+I7lnXKP+/lIaUUpRoFUsyaBZHQKdYfPpIMBp1fZQoaAZoCWgPQwitF0M50Q4AwJSGlFKUaBVLMmgWR0CnWxIW56MSdX2UKGgGaAloD0MI61Ij9DM1+b+UhpRSlGgVSzJoFkdAp1qPB1s+FHV9lChoBmgJaA9DCGlznNuE+/6/lIaUUpRoFUsyaBZHQKdaAHSnccl1fZQoaAZoCWgPQwi1N/jCZKr8v5SGlFKUaBVLMmgWR0CnWYoBRyfddX2UKGgGaAloD0MIwY9q2O/J+b+UhpRSlGgVSzJoFkdAp1wXIhhYvHV9lChoBmgJaA9DCFacai3MAv2/lIaUUpRoFUsyaBZHQKdblGXokiV1fZQoaAZoCWgPQwhJgJpatpb+v5SGlFKUaBVLMmgWR0CnWwX4bjtHdX2UKGgGaAloD0MIIo0KnGzD+r+UhpRSlGgVSzJoFkdAp1qPe7+T/3V9lChoBmgJaA9DCFeyYyMQr/u/lIaUUpRoFUsyaBZHQKddF7el9Bt1fZQoaAZoCWgPQwhF8pVASowCwJSGlFKUaBVLMmgWR0CnXJSGahHtdX2UKGgGaAloD0MI6ITQQZfw+b+UhpRSlGgVSzJoFkdAp1wF8gIQe3V9lChoBmgJaA9DCNXL7zSZsfm/lIaUUpRoFUsyaBZHQKdbj4eLehx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (819 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.748821567115374, "std_reward": 0.2265935281671392, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T04:41:25.372828"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afb3f51eb9655d993139f583d19668bb306867914b8a5e8c1ff18758afa07cb0
|
3 |
+
size 3056
|