Your-Cheese
commited on
Commit
·
f65336a
1
Parent(s):
2e0f3d4
First RL Model
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander.zip +3 -0
- lunar_lander/_stable_baselines3_version +1 -0
- lunar_lander/data +95 -0
- lunar_lander/policy.optimizer.pth +3 -0
- lunar_lander/policy.pth +3 -0
- lunar_lander/pytorch_variables.pth +3 -0
- lunar_lander/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 251.49 +/- 35.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46a1fc7dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46a1fc7e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46a1fc7ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46a1fc7f70>", "_build": "<function ActorCriticPolicy._build at 0x7f46a1fcb040>", "forward": "<function ActorCriticPolicy.forward at 0x7f46a1fcb0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46a1fcb160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46a1fcb1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46a1fcb280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46a1fcb310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46a1fcb3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46a1fcb430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f46a1fc46c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677490145874651547, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALr6Lb7IN4S841Qfu6WLYbnGEe09unJVOgAAgD8AAIA/fWm2PjmMQz/tWLM83xoQv0yAbj51Ra29AAAAAAAAAAC6WxU+10NluRq7zDqvttw2D7e3OxvU8rkAAIA/AACAPyaPZz7sA3E/BhWVPvE+FL+7zWY+8JHHPAAAAAAAAAAAzVuDPFp+rj8uJyY+nf2pvq2ViTvFD3+6AAAAAAAAAACagyK+1HGHvOYI+rzxb567o/fuPfNAfjwAAIA/AACAP6ZH3D26BTA/MuVfPYkN+76OY0o9HDS8OwAAAAAAAAAA4Mwsvojvk7xtrlm7g8+ruQPS/D3F1ZE6AACAPwAAgD/N8wU+gPyEPsrqhLyPCVy+7uGJPXJdEb0AAAAAAAAAAEaGJz4vmE89A9Opvu8NrL6xI9m9ZZlEvAAAAAAAAAAAtt3Cvus/yD6yB268wTXpvnqqMr6cq6M9AAAAAAAAAABmATq9iixOPo51zz09Jke+ls8ZPX+ywT0AAAAAAAAAAE2tYD307Jo/kBtvPoD3FL9YvH89zcbuPQAAAAAAAAAAZtXJPXbUXD2pbqS895o5vhr3Ez2NrHq8AAAAAAAAAABNvju+xWaYP4aQ976dii2/iLFDvtO/+r0AAAAAAAAAAM1fkzxmtaw/8nuAPQ179L5OPSk9jz0sPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+nq+ZrlebkCUhpRSlIwBbJRLy4wBdJRHQJn1121UlzF1fZQoaAZoCWgPQwiBQj19hClxQJSGlFKUaBVLuGgWR0CZ9glHBk7PdX2UKGgGaAloD0MIQUerWtKEbECUhpRSlGgVS89oFkdAmfaay8jAz3V9lChoBmgJaA9DCC8WhsipY3JAlIaUUpRoFUu4aBZHQJn39SydFv11fZQoaAZoCWgPQwgEx2XcVEpxQJSGlFKUaBVL+GgWR0CZ+LEvCdjHdX2UKGgGaAloD0MIHuG04MVYcUCUhpRSlGgVS8xoFkdAmfnq2F36h3V9lChoBmgJaA9DCJ+rrdifUnJAlIaUUpRoFUviaBZHQJn6VC4SYgJ1fZQoaAZoCWgPQwjp76XwIIlvQJSGlFKUaBVL0WgWR0CZ+lVARkEtdX2UKGgGaAloD0MIprc/Fw3pbkCUhpRSlGgVS7ZoFkdAmf149xIatXV9lChoBmgJaA9DCIofY+5a8G1AlIaUUpRoFUuzaBZHQJn9oKXv6TJ1fZQoaAZoCWgPQwgkKH6MOQNwQJSGlFKUaBVNagFoFkdAmf384xUNrnV9lChoBmgJaA9DCKPMBplk3XJAlIaUUpRoFUv/aBZHQJn+kmQbMot1fZQoaAZoCWgPQwh4X5ULVapwQJSGlFKUaBVL/GgWR0CZ/ypsXSBtdX2UKGgGaAloD0MIndUCe8wtYkCUhpRSlGgVTegDaBZHQJn/em/Firl1fZQoaAZoCWgPQwjRJLGk3O1wQJSGlFKUaBVLsWgWR0CaAwz41xbTdX2UKGgGaAloD0MIhJ7Nqg8FcUCUhpRSlGgVS79oFkdAmgPQ7tAs1HV9lChoBmgJaA9DCDI89rNY0V9AlIaUUpRoFU3oA2gWR0CaA+xNqQA/dX2UKGgGaAloD0MIa2YtBaTMckCUhpRSlGgVTQEBaBZHQJoEdzgdfb91fZQoaAZoCWgPQwgsgZTY9RJxQJSGlFKUaBVL72gWR0CaBJmjCYTkdX2UKGgGaAloD0MIeSEdHoKgcUCUhpRSlGgVS/RoFkdAmgXp5JK8MHV9lChoBmgJaA9DCGnIeJTKM29AlIaUUpRoFUvEaBZHQJoHcv8IiTt1fZQoaAZoCWgPQwiA1CZObqlxQJSGlFKUaBVLu2gWR0CaB5r4nF5wdX2UKGgGaAloD0MIEt4ehMBLcECUhpRSlGgVS9BoFkdAmgezpHI6sHV9lChoBmgJaA9DCLB0PjyLO3FAlIaUUpRoFUuyaBZHQJoIFWjoIOZ1fZQoaAZoCWgPQwi0d0Zb1SJwQJSGlFKUaBVLzGgWR0CaCOZezD4ydX2UKGgGaAloD0MIglX18nuXckCUhpRSlGgVS/RoFkdAmgkfYvnKXHV9lChoBmgJaA9DCIDVkSMdbWFAlIaUUpRoFU3oA2gWR0CaCazXz19OdX2UKGgGaAloD0MIN091yM13cUCUhpRSlGgVS7loFkdAmgtzn7pFC3V9lChoBmgJaA9DCGPt72wP829AlIaUUpRoFUu5aBZHQJoMG+g13t91fZQoaAZoCWgPQwgC8iVU8H5wQJSGlFKUaBVLu2gWR0CaDEqTr3TNdX2UKGgGaAloD0MIW7QAbeukcECUhpRSlGgVS9RoFkdAmg39sFdLQHV9lChoBmgJaA9DCHswKT4+nWFAlIaUUpRoFU3oA2gWR0CaDsmzjWCmdX2UKGgGaAloD0MIlWWIY92Ub0CUhpRSlGgVS8RoFkdAmg+kLx7RfHV9lChoBmgJaA9DCAOXx5qR6HFAlIaUUpRoFU0EAWgWR0CaD7c6NlyzdX2UKGgGaAloD0MIGAgCZGg2cUCUhpRSlGgVS/xoFkdAmhBN4Z/CqXV9lChoBmgJaA9DCIY41sWtJXBAlIaUUpRoFUvOaBZHQJoQ5cGC7K91fZQoaAZoCWgPQwjM0HgiCKpwQJSGlFKUaBVL7mgWR0CaEQItlI3BdX2UKGgGaAloD0MInl4pyxC2cUCUhpRSlGgVS8RoFkdAmhEiZ8a4t3V9lChoBmgJaA9DCP4qwHfbsXFAlIaUUpRoFUvSaBZHQJoRJZW7voh1fZQoaAZoCWgPQwjFHAQdretuQJSGlFKUaBVLs2gWR0CaEeGlhw2mdX2UKGgGaAloD0MI61bPSe/AckCUhpRSlGgVTQwBaBZHQJoSNjc2zfJ1fZQoaAZoCWgPQwhY5q26jkBzQJSGlFKUaBVLx2gWR0CaExfKISDidX2UKGgGaAloD0MIQ/6ZQbxEcUCUhpRSlGgVS9JoFkdAmhSAU5+6RXV9lChoBmgJaA9DCEUvo1iucHBAlIaUUpRoFUvJaBZHQJoU05eZ5Rl1fZQoaAZoCWgPQwhAbOnRFJxwQJSGlFKUaBVLwmgWR0CaF07jkuHvdX2UKGgGaAloD0MIaLPqczWVb0CUhpRSlGgVS8poFkdAmhd51JUYK3V9lChoBmgJaA9DCBg+IqbEp29AlIaUUpRoFUvmaBZHQJoXy8scyWR1fZQoaAZoCWgPQwiwrZ/+s3NwQJSGlFKUaBVL0mgWR0CaGBzmfXf7dX2UKGgGaAloD0MIkBFQ4UgHcUCUhpRSlGgVS9VoFkdAmhgxPXTVlXV9lChoBmgJaA9DCNl5G5tdVHNAlIaUUpRoFU0dAWgWR0CaGOx20Re1dX2UKGgGaAloD0MIntLB+v/+cUCUhpRSlGgVS/NoFkdAmhpeqNp/PXV9lChoBmgJaA9DCJvG9lqQonJAlIaUUpRoFUu5aBZHQJobAMEzO5d1fZQoaAZoCWgPQwgQWaSJd7ViQJSGlFKUaBVN6ANoFkdAmhs3Yg7o0XV9lChoBmgJaA9DCMObNXhfVnFAlIaUUpRoFUvvaBZHQJobPtu1ndx1fZQoaAZoCWgPQwgXgbG+wetxQJSGlFKUaBVL6GgWR0CaHPRh+fAcdX2UKGgGaAloD0MI2sU00/1bc0CUhpRSlGgVTV0BaBZHQJodvXqZ+hJ1fZQoaAZoCWgPQwg7inPU0ZJfQJSGlFKUaBVN6ANoFkdAmh5InWrfcnV9lChoBmgJaA9DCLaA0Hq4NnFAlIaUUpRoFUu3aBZHQJoeishgVoJ1fZQoaAZoCWgPQwgGu2HbYkxwQJSGlFKUaBVL3GgWR0CaHyLvTgEVdX2UKGgGaAloD0MIZcdGIN5Rc0CUhpRSlGgVS+loFkdAmh9q3AmAsnV9lChoBmgJaA9DCKcIcHpXH3BAlIaUUpRoFUvcaBZHQJofp4A0bcZ1fZQoaAZoCWgPQwgPuK6YEaRxQJSGlFKUaBVL92gWR0CaIDSCe2/jdX2UKGgGaAloD0MI93ghHV42ckCUhpRSlGgVS+ZoFkdAmiCzJ6po9XV9lChoBmgJaA9DCOxRuB6FMnFAlIaUUpRoFUu0aBZHQJohJN8E3bV1fZQoaAZoCWgPQwi4PNaMTExwQJSGlFKUaBVLtGgWR0CaISsUZeiSdX2UKGgGaAloD0MIsi/ZePAhcUCUhpRSlGgVS8BoFkdAmiFTTOPeYXV9lChoBmgJaA9DCDC8kuS5wHBAlIaUUpRoFUvoaBZHQJoiBvZRKpV1fZQoaAZoCWgPQwj2QgHbAbtwQJSGlFKUaBVLu2gWR0CaIvBd2PkrdX2UKGgGaAloD0MIMqoM4263cUCUhpRSlGgVS79oFkdAmiO+cUdq+XV9lChoBmgJaA9DCNegL739hXFAlIaUUpRoFUvfaBZHQJolmXkYGdJ1fZQoaAZoCWgPQwjwUBTok/dsQJSGlFKUaBVLwmgWR0CaJdj2zv7WdX2UKGgGaAloD0MIIJc48kDTcUCUhpRSlGgVTQwBaBZHQJonCO1fE4x1fZQoaAZoCWgPQwhnnIaoQhh0QJSGlFKUaBVLx2gWR0CaKByDqW1MdX2UKGgGaAloD0MIhEpcxzhRb0CUhpRSlGgVS8NoFkdAmijWzWwu/XV9lChoBmgJaA9DCJ1M3CpIwXJAlIaUUpRoFU0bAWgWR0CaKOEtdzGQdX2UKGgGaAloD0MIH4MVp5qxcUCUhpRSlGgVTQYBaBZHQJopFbFCLMt1fZQoaAZoCWgPQwh+xoUDoRFyQJSGlFKUaBVNBAFoFkdAmimnuAqd6XV9lChoBmgJaA9DCCl1yTgG43FAlIaUUpRoFU0GAWgWR0CaKllzltCRdX2UKGgGaAloD0MIPKOtSiIuX0CUhpRSlGgVTegDaBZHQJoqxxBE8aJ1fZQoaAZoCWgPQwi22y40l8JxQJSGlFKUaBVNFwFoFkdAmirpu63AmHV9lChoBmgJaA9DCMgm+RE/jnJAlIaUUpRoFUvcaBZHQJoq6APNFBp1fZQoaAZoCWgPQwjTTWIQ2AlwQJSGlFKUaBVLxWgWR0CaKvoo/iYLdX2UKGgGaAloD0MI5V5gVih2O0CUhpRSlGgVS3FoFkdAmiy8DbJwKnV9lChoBmgJaA9DCDgvTnw1s3BAlIaUUpRoFUu1aBZHQJotKnpB5X51fZQoaAZoCWgPQwgnFY21/z1xQJSGlFKUaBVL7mgWR0CaLdXgLqlhdX2UKGgGaAloD0MIeXk6VxQHYUCUhpRSlGgVTegDaBZHQJot8Vi4J/p1fZQoaAZoCWgPQwh41JgQ8w9yQJSGlFKUaBVL8GgWR0CaLhe/Ho5hdX2UKGgGaAloD0MIZtmTwObEb0CUhpRSlGgVS8doFkdAmi6uvyLAHnV9lChoBmgJaA9DCHFyv0ORPnBAlIaUUpRoFUu8aBZHQJowraIvalF1fZQoaAZoCWgPQwiBy2PNSBNjQJSGlFKUaBVN6ANoFkdAmjC1M7EHdHV9lChoBmgJaA9DCPNXyFyZB3BAlIaUUpRoFUvcaBZHQJoxK/Zdv891fZQoaAZoCWgPQwiIn/8ePMRyQJSGlFKUaBVNFAFoFkdAmjG6R2bG3nV9lChoBmgJaA9DCEvIBz3bmnFAlIaUUpRoFU0CAWgWR0CaMcuhsZYQdX2UKGgGaAloD0MI+rmhKftPcUCUhpRSlGgVS/BoFkdAmjJbTlT3qXV9lChoBmgJaA9DCJAvoYKDcXJAlIaUUpRoFUv8aBZHQJoyhESdvsJ1fZQoaAZoCWgPQwiS66aUl6NxQJSGlFKUaBVLzGgWR0CaMxTb349HdX2UKGgGaAloD0MIflNYqSDzbkCUhpRSlGgVS9JoFkdAmjOqLS/j83V9lChoBmgJaA9DCB8OEqL843FAlIaUUpRoFUu9aBZHQJoz2jHn2Zl1fZQoaAZoCWgPQwjx9bUuNYVtQJSGlFKUaBVLzGgWR0CaNCf/WDpUdX2UKGgGaAloD0MInBiSk8lEcUCUhpRSlGgVS9loFkdAmjR384xUN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2e46d793f131511fdb5f21c435d8d08b7c46fd81ce482ef3509be2a6b697541
|
3 |
+
size 147315
|
lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
lunar_lander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f46a1fc7dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46a1fc7e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46a1fc7ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46a1fc7f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f46a1fcb040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f46a1fcb0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46a1fcb160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46a1fcb1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f46a1fcb280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46a1fcb310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46a1fcb3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46a1fcb430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f46a1fc46c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677490145874651547,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALr6Lb7IN4S841Qfu6WLYbnGEe09unJVOgAAgD8AAIA/fWm2PjmMQz/tWLM83xoQv0yAbj51Ra29AAAAAAAAAAC6WxU+10NluRq7zDqvttw2D7e3OxvU8rkAAIA/AACAPyaPZz7sA3E/BhWVPvE+FL+7zWY+8JHHPAAAAAAAAAAAzVuDPFp+rj8uJyY+nf2pvq2ViTvFD3+6AAAAAAAAAACagyK+1HGHvOYI+rzxb567o/fuPfNAfjwAAIA/AACAP6ZH3D26BTA/MuVfPYkN+76OY0o9HDS8OwAAAAAAAAAA4Mwsvojvk7xtrlm7g8+ruQPS/D3F1ZE6AACAPwAAgD/N8wU+gPyEPsrqhLyPCVy+7uGJPXJdEb0AAAAAAAAAAEaGJz4vmE89A9Opvu8NrL6xI9m9ZZlEvAAAAAAAAAAAtt3Cvus/yD6yB268wTXpvnqqMr6cq6M9AAAAAAAAAABmATq9iixOPo51zz09Jke+ls8ZPX+ywT0AAAAAAAAAAE2tYD307Jo/kBtvPoD3FL9YvH89zcbuPQAAAAAAAAAAZtXJPXbUXD2pbqS895o5vhr3Ez2NrHq8AAAAAAAAAABNvju+xWaYP4aQ976dii2/iLFDvtO/+r0AAAAAAAAAAM1fkzxmtaw/8nuAPQ179L5OPSk9jz0sPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+nq+ZrlebkCUhpRSlIwBbJRLy4wBdJRHQJn1121UlzF1fZQoaAZoCWgPQwiBQj19hClxQJSGlFKUaBVLuGgWR0CZ9glHBk7PdX2UKGgGaAloD0MIQUerWtKEbECUhpRSlGgVS89oFkdAmfaay8jAz3V9lChoBmgJaA9DCC8WhsipY3JAlIaUUpRoFUu4aBZHQJn39SydFv11fZQoaAZoCWgPQwgEx2XcVEpxQJSGlFKUaBVL+GgWR0CZ+LEvCdjHdX2UKGgGaAloD0MIHuG04MVYcUCUhpRSlGgVS8xoFkdAmfnq2F36h3V9lChoBmgJaA9DCJ+rrdifUnJAlIaUUpRoFUviaBZHQJn6VC4SYgJ1fZQoaAZoCWgPQwjp76XwIIlvQJSGlFKUaBVL0WgWR0CZ+lVARkEtdX2UKGgGaAloD0MIprc/Fw3pbkCUhpRSlGgVS7ZoFkdAmf149xIatXV9lChoBmgJaA9DCIofY+5a8G1AlIaUUpRoFUuzaBZHQJn9oKXv6TJ1fZQoaAZoCWgPQwgkKH6MOQNwQJSGlFKUaBVNagFoFkdAmf384xUNrnV9lChoBmgJaA9DCKPMBplk3XJAlIaUUpRoFUv/aBZHQJn+kmQbMot1fZQoaAZoCWgPQwh4X5ULVapwQJSGlFKUaBVL/GgWR0CZ/ypsXSBtdX2UKGgGaAloD0MIndUCe8wtYkCUhpRSlGgVTegDaBZHQJn/em/Firl1fZQoaAZoCWgPQwjRJLGk3O1wQJSGlFKUaBVLsWgWR0CaAwz41xbTdX2UKGgGaAloD0MIhJ7Nqg8FcUCUhpRSlGgVS79oFkdAmgPQ7tAs1HV9lChoBmgJaA9DCDI89rNY0V9AlIaUUpRoFU3oA2gWR0CaA+xNqQA/dX2UKGgGaAloD0MIa2YtBaTMckCUhpRSlGgVTQEBaBZHQJoEdzgdfb91fZQoaAZoCWgPQwgsgZTY9RJxQJSGlFKUaBVL72gWR0CaBJmjCYTkdX2UKGgGaAloD0MIeSEdHoKgcUCUhpRSlGgVS/RoFkdAmgXp5JK8MHV9lChoBmgJaA9DCGnIeJTKM29AlIaUUpRoFUvEaBZHQJoHcv8IiTt1fZQoaAZoCWgPQwiA1CZObqlxQJSGlFKUaBVLu2gWR0CaB5r4nF5wdX2UKGgGaAloD0MIEt4ehMBLcECUhpRSlGgVS9BoFkdAmgezpHI6sHV9lChoBmgJaA9DCLB0PjyLO3FAlIaUUpRoFUuyaBZHQJoIFWjoIOZ1fZQoaAZoCWgPQwi0d0Zb1SJwQJSGlFKUaBVLzGgWR0CaCOZezD4ydX2UKGgGaAloD0MIglX18nuXckCUhpRSlGgVS/RoFkdAmgkfYvnKXHV9lChoBmgJaA9DCIDVkSMdbWFAlIaUUpRoFU3oA2gWR0CaCazXz19OdX2UKGgGaAloD0MIN091yM13cUCUhpRSlGgVS7loFkdAmgtzn7pFC3V9lChoBmgJaA9DCGPt72wP829AlIaUUpRoFUu5aBZHQJoMG+g13t91fZQoaAZoCWgPQwgC8iVU8H5wQJSGlFKUaBVLu2gWR0CaDEqTr3TNdX2UKGgGaAloD0MIW7QAbeukcECUhpRSlGgVS9RoFkdAmg39sFdLQHV9lChoBmgJaA9DCHswKT4+nWFAlIaUUpRoFU3oA2gWR0CaDsmzjWCmdX2UKGgGaAloD0MIlWWIY92Ub0CUhpRSlGgVS8RoFkdAmg+kLx7RfHV9lChoBmgJaA9DCAOXx5qR6HFAlIaUUpRoFU0EAWgWR0CaD7c6NlyzdX2UKGgGaAloD0MIGAgCZGg2cUCUhpRSlGgVS/xoFkdAmhBN4Z/CqXV9lChoBmgJaA9DCIY41sWtJXBAlIaUUpRoFUvOaBZHQJoQ5cGC7K91fZQoaAZoCWgPQwjM0HgiCKpwQJSGlFKUaBVL7mgWR0CaEQItlI3BdX2UKGgGaAloD0MInl4pyxC2cUCUhpRSlGgVS8RoFkdAmhEiZ8a4t3V9lChoBmgJaA9DCP4qwHfbsXFAlIaUUpRoFUvSaBZHQJoRJZW7voh1fZQoaAZoCWgPQwjFHAQdretuQJSGlFKUaBVLs2gWR0CaEeGlhw2mdX2UKGgGaAloD0MI61bPSe/AckCUhpRSlGgVTQwBaBZHQJoSNjc2zfJ1fZQoaAZoCWgPQwhY5q26jkBzQJSGlFKUaBVLx2gWR0CaExfKISDidX2UKGgGaAloD0MIQ/6ZQbxEcUCUhpRSlGgVS9JoFkdAmhSAU5+6RXV9lChoBmgJaA9DCEUvo1iucHBAlIaUUpRoFUvJaBZHQJoU05eZ5Rl1fZQoaAZoCWgPQwhAbOnRFJxwQJSGlFKUaBVLwmgWR0CaF07jkuHvdX2UKGgGaAloD0MIaLPqczWVb0CUhpRSlGgVS8poFkdAmhd51JUYK3V9lChoBmgJaA9DCBg+IqbEp29AlIaUUpRoFUvmaBZHQJoXy8scyWR1fZQoaAZoCWgPQwiwrZ/+s3NwQJSGlFKUaBVL0mgWR0CaGBzmfXf7dX2UKGgGaAloD0MIkBFQ4UgHcUCUhpRSlGgVS9VoFkdAmhgxPXTVlXV9lChoBmgJaA9DCNl5G5tdVHNAlIaUUpRoFU0dAWgWR0CaGOx20Re1dX2UKGgGaAloD0MIntLB+v/+cUCUhpRSlGgVS/NoFkdAmhpeqNp/PXV9lChoBmgJaA9DCJvG9lqQonJAlIaUUpRoFUu5aBZHQJobAMEzO5d1fZQoaAZoCWgPQwgQWaSJd7ViQJSGlFKUaBVN6ANoFkdAmhs3Yg7o0XV9lChoBmgJaA9DCMObNXhfVnFAlIaUUpRoFUvvaBZHQJobPtu1ndx1fZQoaAZoCWgPQwgXgbG+wetxQJSGlFKUaBVL6GgWR0CaHPRh+fAcdX2UKGgGaAloD0MI2sU00/1bc0CUhpRSlGgVTV0BaBZHQJodvXqZ+hJ1fZQoaAZoCWgPQwg7inPU0ZJfQJSGlFKUaBVN6ANoFkdAmh5InWrfcnV9lChoBmgJaA9DCLaA0Hq4NnFAlIaUUpRoFUu3aBZHQJoeishgVoJ1fZQoaAZoCWgPQwgGu2HbYkxwQJSGlFKUaBVL3GgWR0CaHyLvTgEVdX2UKGgGaAloD0MIZcdGIN5Rc0CUhpRSlGgVS+loFkdAmh9q3AmAsnV9lChoBmgJaA9DCKcIcHpXH3BAlIaUUpRoFUvcaBZHQJofp4A0bcZ1fZQoaAZoCWgPQwgPuK6YEaRxQJSGlFKUaBVL92gWR0CaIDSCe2/jdX2UKGgGaAloD0MI93ghHV42ckCUhpRSlGgVS+ZoFkdAmiCzJ6po9XV9lChoBmgJaA9DCOxRuB6FMnFAlIaUUpRoFUu0aBZHQJohJN8E3bV1fZQoaAZoCWgPQwi4PNaMTExwQJSGlFKUaBVLtGgWR0CaISsUZeiSdX2UKGgGaAloD0MIsi/ZePAhcUCUhpRSlGgVS8BoFkdAmiFTTOPeYXV9lChoBmgJaA9DCDC8kuS5wHBAlIaUUpRoFUvoaBZHQJoiBvZRKpV1fZQoaAZoCWgPQwj2QgHbAbtwQJSGlFKUaBVLu2gWR0CaIvBd2PkrdX2UKGgGaAloD0MIMqoM4263cUCUhpRSlGgVS79oFkdAmiO+cUdq+XV9lChoBmgJaA9DCNegL739hXFAlIaUUpRoFUvfaBZHQJolmXkYGdJ1fZQoaAZoCWgPQwjwUBTok/dsQJSGlFKUaBVLwmgWR0CaJdj2zv7WdX2UKGgGaAloD0MIIJc48kDTcUCUhpRSlGgVTQwBaBZHQJonCO1fE4x1fZQoaAZoCWgPQwhnnIaoQhh0QJSGlFKUaBVLx2gWR0CaKByDqW1MdX2UKGgGaAloD0MIhEpcxzhRb0CUhpRSlGgVS8NoFkdAmijWzWwu/XV9lChoBmgJaA9DCJ1M3CpIwXJAlIaUUpRoFU0bAWgWR0CaKOEtdzGQdX2UKGgGaAloD0MIH4MVp5qxcUCUhpRSlGgVTQYBaBZHQJopFbFCLMt1fZQoaAZoCWgPQwh+xoUDoRFyQJSGlFKUaBVNBAFoFkdAmimnuAqd6XV9lChoBmgJaA9DCCl1yTgG43FAlIaUUpRoFU0GAWgWR0CaKllzltCRdX2UKGgGaAloD0MIPKOtSiIuX0CUhpRSlGgVTegDaBZHQJoqxxBE8aJ1fZQoaAZoCWgPQwi22y40l8JxQJSGlFKUaBVNFwFoFkdAmirpu63AmHV9lChoBmgJaA9DCMgm+RE/jnJAlIaUUpRoFUvcaBZHQJoq6APNFBp1fZQoaAZoCWgPQwjTTWIQ2AlwQJSGlFKUaBVLxWgWR0CaKvoo/iYLdX2UKGgGaAloD0MI5V5gVih2O0CUhpRSlGgVS3FoFkdAmiy8DbJwKnV9lChoBmgJaA9DCDgvTnw1s3BAlIaUUpRoFUu1aBZHQJotKnpB5X51fZQoaAZoCWgPQwgnFY21/z1xQJSGlFKUaBVL7mgWR0CaLdXgLqlhdX2UKGgGaAloD0MIeXk6VxQHYUCUhpRSlGgVTegDaBZHQJot8Vi4J/p1fZQoaAZoCWgPQwh41JgQ8w9yQJSGlFKUaBVL8GgWR0CaLhe/Ho5hdX2UKGgGaAloD0MIZtmTwObEb0CUhpRSlGgVS8doFkdAmi6uvyLAHnV9lChoBmgJaA9DCHFyv0ORPnBAlIaUUpRoFUu8aBZHQJowraIvalF1fZQoaAZoCWgPQwiBy2PNSBNjQJSGlFKUaBVN6ANoFkdAmjC1M7EHdHV9lChoBmgJaA9DCPNXyFyZB3BAlIaUUpRoFUvcaBZHQJoxK/Zdv891fZQoaAZoCWgPQwiIn/8ePMRyQJSGlFKUaBVNFAFoFkdAmjG6R2bG3nV9lChoBmgJaA9DCEvIBz3bmnFAlIaUUpRoFU0CAWgWR0CaMcuhsZYQdX2UKGgGaAloD0MI+rmhKftPcUCUhpRSlGgVS/BoFkdAmjJbTlT3qXV9lChoBmgJaA9DCJAvoYKDcXJAlIaUUpRoFUv8aBZHQJoyhESdvsJ1fZQoaAZoCWgPQwiS66aUl6NxQJSGlFKUaBVLzGgWR0CaMxTb349HdX2UKGgGaAloD0MIflNYqSDzbkCUhpRSlGgVS9JoFkdAmjOqLS/j83V9lChoBmgJaA9DCB8OEqL843FAlIaUUpRoFUu9aBZHQJoz2jHn2Zl1fZQoaAZoCWgPQwjx9bUuNYVtQJSGlFKUaBVLzGgWR0CaNCf/WDpUdX2UKGgGaAloD0MInBiSk8lEcUCUhpRSlGgVS9loFkdAmjR384xUN3VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0596c1c34c458a612a20399b7c5f4637605c66e8f5f123cb242dd6c162dcf5e9
|
3 |
+
size 87929
|
lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4170d18bfb0a1c288bb2610536bce7a657d459e8e89547b50150a0adf141999
|
3 |
+
size 43393
|
lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (219 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 251.48837983679996, "std_reward": 35.376027196285925, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T09:57:27.951507"}
|