File size: 13,751 Bytes
9ae66a5 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae42822e8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae42822e950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae42822e9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae42822ea70>", "_build": "<function ActorCriticPolicy._build at 0x7ae42822eb00>", "forward": "<function ActorCriticPolicy.forward at 0x7ae42822eb90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae42822ec20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae42822ecb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae42822ed40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae42822edd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae42822ee60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae42822eef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae4281d9b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696434922952421070, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObOLD17HIS6JpTEOvocwTVV7fC6Hb3kuQAAgD8AAIA/mqOxvVzLWLpvqyO6iT0itHm5jbsqlUI5AACAPwAAgD9mKIO8e6aous5kjbh9aoCzOIBcubMjojcAAIA/AACAPwC/njx7Np26CKRcO7KbfzgdR2m6rqgDugAAgD8AAIA/M4KIvSkIP7pCWx24lLydswkMejqPWzU3AACAPwAAgD/NFBO+nnWSP831i70tO5W+J4NyvQ4iIL0AAAAAAAAAAJqmuTyPpk66vuOQOXpxTLaHgYO6x16puAAAgD8AAIA/mrFbva45hroq0c26/ne/tZS1ojke0eo5AACAPwAAgD+mEbG9XK9ZuirJPzvpkgI4jomhOzLlTboAAIA/AACAP81pcb0UOKu6Qg0wuy+LKzZkW6A5o1OXtQAAgD8AAIA/U1ZEvgLdkT//pom+5INyvvx2TL6mmga8AAAAAAAAAADmziE94XCMunu1kTsf3M4455XLuhb1LboAAIA/AACAPxqth717GJG6LeRwuu/sf7MhQu865syJOQAAgD8AAIA/TSWSvcarwT7OGNk9XKacvvZoij1jQNc8AAAAAAAAAADNJi29KWAauoP8krgOle61sMipt37frjcAAIA/AACAP4BXh717OKG6wRSdO6L08jUCzu06PKW0ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF7PxJd0JWyMAWyUTegDjAF0lEdAkiI5z1bqyHV9lChoBkdAZs6HtWuHOGgHTegDaAhHQJImNLcsUZh1fZQoaAZHQGZPSCnP3SNoB03oA2gIR0CSKXUTcqOMdX2UKGgGR0BjLXyXlbNbaAdN6ANoCEdAkivtz4k/r3V9lChoBkdAZlJiwSrYG2gHTegDaAhHQJIuJeNT9891fZQoaAZHQGTxld9lVcVoB03oA2gIR0CSMYnNPgvUdX2UKGgGR0A4/W1c+qzaaAdNFAFoCEdAkjRTQ7cO9XV9lChoBkdAYnlywOe8PGgHTegDaAhHQJI0zneSB9V1fZQoaAZHQGfhC5NGmUJoB03oA2gIR0CSS/EXLvCudX2UKGgGR0BNfbMX7+DOaAdNQAFoCEdAkk8JIYm9hHV9lChoBkdAYMiyfL9uP2gHTegDaAhHQJJSbhUBGQV1fZQoaAZHP/5G6f8MuvloB00QAWgIR0CSUsQ5FPSEdX2UKGgGR0Bg/4R28qWkaAdN6ANoCEdAklrm/WUbDXV9lChoBkdAYO3Vd5Y5k2gHTegDaAhHQJJeMFjd56d1fZQoaAZHQGWubkn1FphoB03oA2gIR0CSXjX2dupCdX2UKGgGR0Bi5N8zAN5MaAdN6ANoCEdAkmZ9+1Bt13V9lChoBkdAYLNJ0W/JvGgHTegDaAhHQJJsBXJYDDF1fZQoaAZHQGXkDtgKF7FoB03oA2gIR0CSbCT4+KTCdX2UKGgGR0BhPlFtsN2DaAdN6ANoCEdAkm6M5n13+3V9lChoBkdAYAqNFSbYsmgHTegDaAhHQJJ3smG/N7l1fZQoaAZHQGCFgS39aU1oB03oA2gIR0CSeramGdqddX2UKGgGR0BjFEVFhG6PaAdN6ANoCEdAkn/R5HEuQXV9lChoBkdAYSUzTF2mpGgHTegDaAhHQJKGokfLcKx1fZQoaAZHQGOl3cxj8UFoB03oA2gIR0CShykk8ifQdX2UKGgGR0BbHLhrFfiQaAdN6ANoCEdAkqSuj2zv7XV9lChoBkdAYo/mA9V3lmgHTegDaAhHQJKn8TPBzmx1fZQoaAZHQGK3QBPsRg9oB03oA2gIR0CSqoPJaJQ+dX2UKGgGR0BiSBOJtSAIaAdN6ANoCEdAkqrEQkHD8HV9lChoBkdAZFnbu+h4+2gHTegDaAhHQJKwYPWhAW11fZQoaAZHQGHSvGACnxdoB03oA2gIR0CSsp7T2FnJdX2UKGgGR0BjpMmOU+s6aAdN6ANoCEdAkrKhNVR1o3V9lChoBkdASS3TXrdFfGgHS+NoCEdAkrS+yeI2wXV9lChoBkdAUoA4aP0ZnGgHS9BoCEdAkrYAljVhC3V9lChoBkdAZaUllbu+iGgHTegDaAhHQJK4p/y5I6N1fZQoaAZHQGfmVIiC8OFoB03oA2gIR0CSvWi48U22dX2UKGgGR0BYCKGYa5wwaAdN6ANoCEdAkr2EW/JvHnV9lChoBkdAZJHX/5tWMmgHTegDaAhHQJK/nG5tm+V1fZQoaAZHQEF78neBQN1oB00lAWgIR0CSv7X3QD3edX2UKGgGR0BE/3nQpnYhaAdL/GgIR0CSwXc+aBqcdX2UKGgGR0BGI8XenAIqaAdNCgFoCEdAksXgevIOpnV9lChoBkdAZBHghr30w2gHTegDaAhHQJLG9RNyo4x1fZQoaAZHQGZwGDL8rI5oB03oA2gIR0CSybcpb2UTdX2UKGgGR0Bgl5kkKNQ1aAdN6ANoCEdAks9ZBTn7pHV9lChoBkdAZufd1uBMBmgHTegDaAhHQJLXqtKZlWh1fZQoaAZHQGHO1B+nZTRoB03oA2gIR0CS2FUZNwirdX2UKGgGR0BmmpcE/0NCaAdN6ANoCEdAkuB+8brC33V9lChoBkdAQwxD5TIeYGgHTSIBaAhHQJL0BjNIK+l1fZQoaAZHQGCmLeANG3FoB03oA2gIR0CS9jFyJbdKdX2UKGgGR0Bi/PCuU2UCaAdN6ANoCEdAkv4NZq20A3V9lChoBkdAZfHai9IwumgHTegDaAhHQJL+DpzLfUF1fZQoaAZHQE+0vnKW9lFoB0vHaAhHQJL/C/IsAed1fZQoaAZHQGM7FDneSB9oB03oA2gIR0CTAWSAYpDvdX2UKGgGR0BmmAre67NCaAdN6ANoCEdAkwqvTG5tnHV9lChoBkdAZdoCaqjrRmgHTegDaAhHQJMK3b/Ot4l1fZQoaAZHQGIXEJSiudRoB03oA2gIR0CTDhMK1G9YdX2UKGgGR0BhlrYsd1dPaAdN6ANoCEdAkw5GYjSofnV9lChoBkdAYh3BdD6WPmgHTegDaAhHQJMRNx7zCk51fZQoaAZHQGVZTyjHn2ZoB03oA2gIR0CTGA+1jRUndX2UKGgGR0Bg7XxtpEhJaAdN6ANoCEdAkxm1QIldC3V9lChoBkdAZqPctXgccWgHTegDaAhHQJMcZ0wJw851fZQoaAZHQEGVOSGJvYRoB00dAWgIR0CTHt3RG+bmdX2UKGgGR0BHlNKqXF98aAdL5WgIR0CTIFC0WuYAdX2UKGgGR0Biz0HB1s+FaAdN6ANoCEdAkycVjd56dHV9lChoBkdAYyX/ZM+NcWgHTegDaAhHQJMnij/Mnqp1fZQoaAZHQEnfFb3XZoRoB0v8aAhHQJMrGqioKlZ1fZQoaAZHQGesNfoicG1oB03oA2gIR0CTLs+1SflIdX2UKGgGR0BJoR7zCk44aAdNHwFoCEdAkzAD9n9NvnV9lChoBkdAY2imBOHnEGgHTegDaAhHQJNGaZy+6Ah1fZQoaAZHQGUjbfxc3VFoB03oA2gIR0CTU/yk9ECvdX2UKGgGR0Bjpo7kn1FpaAdN6ANoCEdAk1QEm+j/MnV9lChoBkdAQe6lDWsijmgHTS0BaAhHQJNURzBAOax1fZQoaAZHQGcNkQGwA2hoB03oA2gIR0CTVbG6PKdQdX2UKGgGR0Be8hwQ176YaAdN6ANoCEdAk1iprP+n63V9lChoBkdAYPfroGIKt2gHTegDaAhHQJNhN4+r2g51fZQoaAZHQGeDHNPgvUVoB03oA2gIR0CTY+Tl1bJPdX2UKGgGR0BgS1AZ88cNaAdN6ANoCEdAk2QC9EkSmXV9lChoBkdAYj35ylvZRWgHTegDaAhHQJNrwA4n4PB1fZQoaAZHQGU9LJbMX8BoB03oA2gIR0CTbQ+ZPVNIdX2UKGgGR0BkOL0e2d/baAdN6ANoCEdAk3S2tyPuHHV9lChoBkdAYQvCMPz4DmgHTegDaAhHQJN7+FsYVIt1fZQoaAZHQGDkVdxAB1doB03oA2gIR0CTfH6shgVodX2UKGgGR0BhT5mqYJE6aAdN6ANoCEdAk4XvRmbsnnV9lChoBkdAYqHvHcUM5WgHTegDaAhHQJOHuaWom5V1fZQoaAZHQGNChybQTmJoB03oA2gIR0CToDEIw/PgdX2UKGgGR0BShjEit7rtaAdL8GgIR0CToQhkRSP2dX2UKGgGR0Bj+JjDsMRZaAdN6ANoCEdAk6jA31jAi3V9lChoBkdAXpcrI5o4/GgHTegDaAhHQJOow6dUbUB1fZQoaAZHQGCgmg8KXv9oB03oA2gIR0CTqO/ffoA5dX2UKGgGR0BhsWlhw2l3aAdN6ANoCEdAk6nLBbfP5nV9lChoBkdAX8clPacqfGgHTegDaAhHQJOsOdmQKa51fZQoaAZHQGMgPGyX2M9oB03oA2gIR0CTtKWmxdIHdX2UKGgGR0BdUCFsYVIqaAdN6ANoCEdAk7d2CNCJGnV9lChoBkdAZhKraufVZ2gHTegDaAhHQJO3mJ2t+1B1fZQoaAZHQF/IoTPBzmxoB03oA2gIR0CTwXAUcn3MdX2UKGgGR0BjBnK6nR9gaAdN6ANoCEdAk8NRtUGVzXV9lChoBkdAUldnDiwSrmgHS/ZoCEdAk8wM9KVY6nV9lChoBkdAXZFHTZxrBWgHTegDaAhHQJPOLTmW+oN1fZQoaAZHQGWrudoWYWtoB03oA2gIR0CT1mYoy9EkdX2UKGgGR0BhKaeGwiaBaAdN6ANoCEdAk94FbqyGBXV9lChoBkdAZj1OGCZnc2gHTegDaAhHQJPfXdxhlUZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |