YukiIsobe commited on
Commit
6e40724
·
verified ·
1 Parent(s): 695d0a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -189
README.md CHANGED
@@ -11,192 +11,123 @@ tags: []
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
13
 
14
-
15
- ## Model Details
16
-
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
-
31
- ### Model Sources [optional]
32
-
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
-
43
- ### Direct Use
44
-
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
-
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
-
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to get started with the model.
76
-
77
- [More Information Needed]
78
-
79
- ## Training Details
80
-
81
- ### Training Data
82
-
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
86
-
87
- ### Training Procedure
88
-
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
97
-
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Evaluation
107
-
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
- ### Testing Data, Factors & Metrics
111
-
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Results
131
-
132
- [More Information Needed]
133
-
134
- #### Summary
135
-
136
-
137
-
138
- ## Model Examination [optional]
139
-
140
- <!-- Relevant interpretability work for the model goes here -->
141
-
142
- [More Information Needed]
143
-
144
- ## Environmental Impact
145
-
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
-
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
-
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
-
156
- ## Technical Specifications [optional]
157
-
158
- ### Model Architecture and Objective
159
-
160
- [More Information Needed]
161
-
162
- ### Compute Infrastructure
163
-
164
- [More Information Needed]
165
-
166
- #### Hardware
167
-
168
- [More Information Needed]
169
-
170
- #### Software
171
-
172
- [More Information Needed]
173
-
174
- ## Citation [optional]
175
-
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
-
178
- **BibTeX:**
179
-
180
- [More Information Needed]
181
-
182
- **APA:**
183
-
184
- [More Information Needed]
185
-
186
- ## Glossary [optional]
187
-
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
-
190
- [More Information Needed]
191
-
192
- ## More Information [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Authors [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Contact
201
-
202
- [More Information Needed]
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
13
 
14
+ # Code
15
+ ```python
16
+ # 必要なライブラリをインストール
17
+ # python 3.10.12環境を前提としています
18
+ !pip install -U pip
19
+ !pip install -U transformers
20
+ !pip install -U bitsandbytes
21
+ !pip install -U accelerate
22
+ !pip install -U datasets
23
+ !pip install -U peft
24
+ !pip install -U trl
25
+ !pip install -U wandb
26
+ !pip install ipywidgets --upgrade
27
+
28
+ from transformers import (
29
+ AutoModelForCausalLM,
30
+ AutoTokenizer,
31
+ BitsAndBytesConfig,
32
+ )
33
+ from peft import PeftModel
34
+ import torch
35
+ from tqdm import tqdm
36
+ import json
37
+
38
+ # Hugging Faceで取得したTokenを設定
39
+ # Hugging Face Hubの[Settings > Access Tokens]で新規トークンを作成してください。
40
+ from google.colab import userdata
41
+ HF_TOKEN = userdata.get('HF_TOKEN')
42
+
43
+ # モデルIDとアダプタIDを指定
44
+ model_id = "llm-jp/llm-jp-3-13b"
45
+ adapter_id = "totsukash/llm-jp-3-13b-finetune"
46
+
47
+ # QLoRA設定
48
+ # 量子化(4bit)を行い、効率的なメモリ使用を実現
49
+ bnb_config = BitsAndBytesConfig(
50
+ load_in_4bit=True,
51
+ bnb_4bit_quant_type="nf4",
52
+ bnb_4bit_compute_dtype=torch.bfloat16,
53
+ )
54
+
55
+ # モデルをロード
56
+ # device_map="auto"で、利用可能なGPUやCPUに自動的に割り当て
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_id,
59
+ quantization_config=bnb_config,
60
+ device_map="auto",
61
+ token = HF_TOKEN
62
+ )
63
+
64
+ # トークナイザーをロード
65
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
66
+
67
+ # LoRAアダプタを統合
68
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
69
+
70
+ # データセットの読み込み
71
+ # 評価用データはjsonl形式(各行がJSONオブジェクト)で保存されている必要があります。
72
+ datasets = []
73
+ with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
74
+ item = ""
75
+ for line in f:
76
+ line = line.strip()
77
+ item += line
78
+ if item.endswith("}"): # JSONオブジェクトの終了を検出
79
+ datasets.append(json.loads(item))
80
+ item = ""
81
+
82
+ # 推論処理
83
+ # 各タスクの入力をモデルに渡し、生成された出力を収集します。
84
+ results = []
85
+ for data in tqdm(datasets):
86
+ input = data["input"]
87
+ prompt = f"""### 指示
88
+ {input}
89
+ ### 回答
90
+ """
91
+
92
+ # 入力トークンを生成してモデルに入力
93
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
94
+ outputs = model.generate(input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2)
95
+ output = tokenizer.decode(outputs[0][input_ids.size(1):], skip_special_tokens=True)
96
+
97
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
98
+
99
+ # # llmjp
100
+ # results = []
101
+ # for data in tqdm(datasets):
102
+
103
+ # input = data["input"]
104
+
105
+ # prompt = f"""### 指示
106
+ # {input}
107
+ # ### 回答
108
+ # """
109
+
110
+ # tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
111
+ # attention_mask = torch.ones_like(tokenized_input)
112
+ # with torch.no_grad():
113
+ # outputs = model.generate(
114
+ # tokenized_input,
115
+ # attention_mask=attention_mask,
116
+ # max_new_tokens=100,
117
+ # do_sample=False,
118
+ # repetition_penalty=1.2,
119
+ # pad_token_id=tokenizer.eos_token_id
120
+ # )[0]
121
+ # output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
122
+ #
123
+ # results.append({"task_id": data["task_id"], "input": input, "output": output})
124
+
125
+ # 推論結果をJSONL形式で保存
126
+ # ファイル名はアダプタIDに基づいて作成
127
+ import re
128
+ jsonl_id = re.sub(".*/", "", adapter_id)
129
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
130
+ for result in results:
131
+ json.dump(result, f, ensure_ascii=False) # 日本語対応
132
+ f.write('\n')
133
+ ```