Ankit Kumar
commited on
Commit
·
101ec3e
1
Parent(s):
c8f4cae
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.25 +/- 0.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cddad5c07a33737de2a46cf30389bc0e36d6e99b066b022ddd9db3e47769146c
|
3 |
+
size 108132
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d6930140430>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d6930138f80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 3000000,
|
23 |
+
"_total_timesteps": 3000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1698238361337270811,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO4DLP+TThr+7IsE/e0itv3Zp3T5Sh+Y+I1+6Pyv3Ij+tQp2/+y2kPyFMub4sfp89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]]",
|
34 |
+
"desired_goal": "[[ 1.5898508 -1.0533414 1.5088724 ]\n [-1.3537744 0.43244523 0.45025116]\n [ 1.4560283 0.636584 -1.2285973 ]\n [ 1.2826532 -0.36190894 0.07787737]]",
|
35 |
+
"observation": "[[ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACRHmvR/ASTyxCWU+7/fvvbcwxDxhjew8pYsyPQr/d7v4RlY+vZwCvmvfD75VCBk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.11233718 0.01231387 0.22366978]\n [-0.11717211 0.02394901 0.02887601]\n [ 0.04359021 -0.00378412 0.2092551 ]\n [-0.12755103 -0.14050071 0.14944585]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7rR4QjD8+CMAWyUSwKMAXSUR0C+Ml6SxJNCdX2UKGgGR7/BGOMl1KXfaAdLAmgIR0C+MdDIzWPMdX2UKGgGR7/HhWo3rD64aAdLA2gIR0C+MphEWqLkdX2UKGgGR7/TcawUxmCiaAdLA2gIR0C+Mh4znA6/dX2UKGgGR798kdFOO802aAdLAWgIR0C+MpqRuCPIdX2UKGgGR7/MiwjdHlOoaAdLA2gIR0C+MmaaG5+ZdX2UKGgGR7+GoFV1fVqfaAdLAWgIR0C+Mp0voNd7dX2UKGgGR7/W6N2ki2UjaAdLA2gIR0C+Mdk0aZQYdX2UKGgGR7+ZLRKHwgDBaAdLAWgIR0C+Mds8DB/JdX2UKGgGR7/K+7Dl5nlGaAdLA2gIR0C+Mm1khA4XdX2UKGgGR7/Onx8UmD15aAdLBGgIR0C+MidR77bddX2UKGgGR7+fZmI0qH45aAdLAWgIR0C+MiqXKKYRdX2UKGgGR7/bTOgQHzH0aAdLBGgIR0C+MqbdWQwLdX2UKGgGR7/Kxkd3jdYXaAdLA2gIR0C+MeK3NLUTdX2UKGgGR7+/CWNWEK3NaAdLAmgIR0C+Mi7kKeCkdX2UKGgGR7/QnqFAVwglaAdLBGgIR0C+MndJ8OTadX2UKGgGR7/Ry5I6Kcd6aAdLA2gIR0C+Mq13IMjNdX2UKGgGR7/Pbs4T9KmLaAdLA2gIR0C+MeliKBNFdX2UKGgGR7/AlabF0gbIaAdLA2gIR0C+MjZ88cMmdX2UKGgGR7+ou5BkZrHmaAdLAWgIR0C+Meye7L+xdX2UKGgGR7/K5xzaK1ohaAdLA2gIR0C+Mn7fk3judX2UKGgGR7/S5oGpuMuOaAdLA2gIR0C+MrUiUxEfdX2UKGgGR7/DpM6BAfMfaAdLAmgIR0C+MoMIiTt+dX2UKGgGR7/ADoQnQY1paAdLAmgIR0C+MrlLeyiVdX2UKGgGR7/fyIYWLxZuaAdLBGgIR0C+Mj8tXgccdX2UKGgGR7/Y2nKnvUjLaAdLBGgIR0C+MfWIoE0SdX2UKGgGR7+lI5HVf/m1aAdLAWgIR0C+Mr0Aksz3dX2UKGgGR7+0kdFOO802aAdLAmgIR0C+MokJWvKVdX2UKGgGR7+oqslsxfv4aAdLAWgIR0C+MfkD6nBMdX2UKGgGR7/FEtuk1uR+aAdLA2gIR0C+Mkce4kNXdX2UKGgGR7+0iA2AG0NSaAdLAmgIR0C+Mf1GPPszdX2UKGgGR7/Jvegte2NOaAdLA2gIR0C+MsOK0lZ6dX2UKGgGR7/WmP5pJwsHaAdLBGgIR0C+MpGs/6frdX2UKGgGR7+7uogmqo60aAdLAmgIR0C+MskHpr1vdX2UKGgGR7/RdJJ5E+gUaAdLA2gIR0C+Mk8Oby6MdX2UKGgGR7/Sm9g4OtnxaAdLA2gIR0C+MgVBhQWOdX2UKGgGR7+y5SWJJoTPaAdLAmgIR0C+MlNI5HVgdX2UKGgGR7/YKKYRdyDJaAdLBGgIR0C+Mpu1OTJRdX2UKGgGR7/Stb9qDbrUaAdLA2gIR0C+MgvLxI8RdX2UKGgGR7/Zc/MW43FUaAdLBGgIR0C+MtI9C/oJdX2UKGgGR7+6inHeaa1DaAdLAmgIR0C+MtekUKzBdX2UKGgGR7/R+LWI42jxaAdLA2gIR0C+MqO4smOVdX2UKGgGR7/YG1QZXMhYaAdLBGgIR0C+Ml27z06HdX2UKGgGR7/UiWVu76HkaAdLA2gIR0C+MhPoNd7fdX2UKGgGR7/HIxQBPsRhaAdLA2gIR0C+Mt5Aprk9dX2UKGgGR7/R3XI2fkFOaAdLA2gIR0C+MqpLmITHdX2UKGgGR7/PSNOuaF23aAdLA2gIR0C+MmQ9/z8QdX2UKGgGR7/NHFPznRsuaAdLA2gIR0C+Mhp0jkdWdX2UKGgGR7+SIHkcS5AhaAdLAWgIR0C+MuH6InBtdX2UKGgGR7+7yWiUPhAGaAdLAmgIR0C+Mh/1xsEadX2UKGgGR7/K8PnSv1UVaAdLA2gIR0C+MrJd0JWvdX2UKGgGR7/SXYlIEr5JaAdLA2gIR0C+MmxubZvldX2UKGgGR7/V48EFGG21aAdLA2gIR0C+MujA8B+4dX2UKGgGR7/BwTdtVJcxaAdLAmgIR0C+MnCQPqcFdX2UKGgGR7/LNBWxQizLaAdLA2gIR0C+MiazmfXgdX2UKGgGR7/JGuLaVUuMaAdLA2gIR0C+MroKIBRydX2UKGgGR7/MHcDbJwKjaAdLA2gIR0C+MvAo9cKPdX2UKGgGR7/MnCwbEP1+aAdLA2gIR0C+Mi4BikO7dX2UKGgGR7/K1QZXMhX9aAdLA2gIR0C+MsA6IWP+dX2UKGgGR7/atXxOLzf8aAdLBGgIR0C+MnophF3IdX2UKGgGR7/AMUh3aBZqaAdLAmgIR0C+MjJjYqXodX2UKGgGR7+zqzJIUahpaAdLAmgIR0C+Mn+anaWYdX2UKGgGR7/E09hZyMkyaAdLA2gIR0C+MsfjOs1bdX2UKGgGR7/Agntv4ubraAdLAmgIR0C+MoSFj/dZdX2UKGgGR7/Rkhib2Dg7aAdLA2gIR0C+MjsAaNuMdX2UKGgGR7/D1e0G/vfCaAdLAmgIR0C+Ms4f4h2XdX2UKGgGR7/I+pwS8J2MaAdLA2gIR0C+Mo2hVU++dX2UKGgGR7/TW7e2uxKQaAdLA2gIR0C+MkPReC04dX2UKGgGR7/ULFXJYDDCaAdLA2gIR0C+MtYInjQzdX2UKGgGR7+7gbZOBUaRaAdLAmgIR0C+MpIacZtOdX2UKGgGR7/0IzFdcB2faAdLDmgIR0C+MxPd69kCdX2UKGgGR7/dbd8Aq/dqaAdLBGgIR0C+Mt/w3HaOdX2UKGgGR7/RyhzvJA+qaAdLA2gIR0C+Mpng9/z8dX2UKGgGR7+2uyNXHR1HaAdLAmgIR0C+Mxgk5ZKWdX2UKGgGR7/hemelKsdUaAdLB2gIR0C+MlQ/HHWCdX2UKGgGR7/RHc1wYLssaAdLA2gIR0C+MuZylvZRdX2UKGgGR7/SIkqtozvaaAdLA2gIR0C+MqBXGOuJdX2UKGgGR7/Q/+85CF9KaAdLA2gIR0C+Mx/epGWldX2UKGgGR7/GFuejEehgaAdLA2gIR0C+Mlv1tfoidX2UKGgGR7/QgXuVopQUaAdLA2gIR0C+Mu4s7MgVdX2UKGgGR7/Ha/yoXKr8aAdLA2gIR0C+Mqg22oegdX2UKGgGR7+8feUILPUsaAdLAmgIR0C+MmBwuM/AdX2UKGgGR7/QczqKP4mDaAdLA2gIR0C+MybApKBedX2UKGgGR7+c0xdpqREGaAdLAWgIR0C+MmKtxMnJdX2UKGgGR7/INvOyE+PjaAdLA2gIR0C+MvUIPbwjdX2UKGgGR7/JrjYI0IkaaAdLA2gIR0C+Mq7zkIX1dX2UKGgGR7+4kka/ATIvaAdLAmgIR0C+Myx2jfvXdX2UKGgGR7+mE7GNrCWNaAdLAWgIR0C+My704BFNdX2UKGgGR7/WVwPy08eTaAdLA2gIR0C+Mmrfk3judX2UKGgGR7+5bnoxHoX9aAdLAmgIR0C+MzMS5AhTdX2UKGgGR7/bl+EytV7yaAdLBGgIR0C+Mrjho/RmdX2UKGgGR7+n6ZYxL0z1aAdLAWgIR0C+MrsVpKzzdX2UKGgGR7/CwUQCjk+5aAdLA2gIR0C+MnFSjxkNdX2UKGgGR7/gHIZIg/1QaAdLBmgIR0C+MwTeoDPodX2UKGgGR7++YoiLVFx5aAdLAmgIR0C+MsDSw4bTdX2UKGgGR7/RooNNJvpAaAdLA2gIR0C+MnkofCAMdX2UKGgGR7/fXlbNbC79aAdLBmgIR0C+M0GcOLBLdX2UKGgGR7/XzabnX/YKaAdLBGgIR0C+Mw2sq8UVdX2UKGgGR7/S5ksjFAE/aAdLA2gIR0C+Msef/WDpdX2UKGgGR7+2lzltCRfXaAdLAmgIR0C+Mn3KKYRedWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 150000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14e994bba18672812175b56e8fdb380af34df21b5796c41b82a295f6627b390d
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d46d0f3b45af5393ea886573dbe3438a6f2c817f7767958770462b4e1262391a
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d6930140430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d6930138f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698238361337270811, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+hqqDPmLqRrwIbeM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO4DLP+TThr+7IsE/e0itv3Zp3T5Sh+Y+I1+6Pyv3Ij+tQp2/+y2kPyFMub4sfp89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6GqoM+YupGvAht4z6FdgA/TfV6u6qFxz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]\n [ 0.25716037 -0.01214084 0.44419122]]", "desired_goal": "[[ 1.5898508 -1.0533414 1.5088724 ]\n [-1.3537744 0.43244523 0.45025116]\n [ 1.4560283 0.636584 -1.2285973 ]\n [ 1.2826532 -0.36190894 0.07787737]]", "observation": "[[ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]\n [ 0.25716037 -0.01214084 0.44419122 0.50180846 -0.00382932 0.38969165]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACRHmvR/ASTyxCWU+7/fvvbcwxDxhjew8pYsyPQr/d7v4RlY+vZwCvmvfD75VCBk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11233718 0.01231387 0.22366978]\n [-0.11717211 0.02394901 0.02887601]\n [ 0.04359021 -0.00378412 0.2092551 ]\n [-0.12755103 -0.14050071 0.14944585]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7rR4QjD8+CMAWyUSwKMAXSUR0C+Ml6SxJNCdX2UKGgGR7/BGOMl1KXfaAdLAmgIR0C+MdDIzWPMdX2UKGgGR7/HhWo3rD64aAdLA2gIR0C+MphEWqLkdX2UKGgGR7/TcawUxmCiaAdLA2gIR0C+Mh4znA6/dX2UKGgGR798kdFOO802aAdLAWgIR0C+MpqRuCPIdX2UKGgGR7/MiwjdHlOoaAdLA2gIR0C+MmaaG5+ZdX2UKGgGR7+GoFV1fVqfaAdLAWgIR0C+Mp0voNd7dX2UKGgGR7/W6N2ki2UjaAdLA2gIR0C+Mdk0aZQYdX2UKGgGR7+ZLRKHwgDBaAdLAWgIR0C+Mds8DB/JdX2UKGgGR7/K+7Dl5nlGaAdLA2gIR0C+Mm1khA4XdX2UKGgGR7/Onx8UmD15aAdLBGgIR0C+MidR77bddX2UKGgGR7+fZmI0qH45aAdLAWgIR0C+MiqXKKYRdX2UKGgGR7/bTOgQHzH0aAdLBGgIR0C+MqbdWQwLdX2UKGgGR7/Kxkd3jdYXaAdLA2gIR0C+MeK3NLUTdX2UKGgGR7+/CWNWEK3NaAdLAmgIR0C+Mi7kKeCkdX2UKGgGR7/QnqFAVwglaAdLBGgIR0C+MndJ8OTadX2UKGgGR7/Ry5I6Kcd6aAdLA2gIR0C+Mq13IMjNdX2UKGgGR7/Pbs4T9KmLaAdLA2gIR0C+MeliKBNFdX2UKGgGR7/AlabF0gbIaAdLA2gIR0C+MjZ88cMmdX2UKGgGR7+ou5BkZrHmaAdLAWgIR0C+Meye7L+xdX2UKGgGR7/K5xzaK1ohaAdLA2gIR0C+Mn7fk3judX2UKGgGR7/S5oGpuMuOaAdLA2gIR0C+MrUiUxEfdX2UKGgGR7/DpM6BAfMfaAdLAmgIR0C+MoMIiTt+dX2UKGgGR7/ADoQnQY1paAdLAmgIR0C+MrlLeyiVdX2UKGgGR7/fyIYWLxZuaAdLBGgIR0C+Mj8tXgccdX2UKGgGR7/Y2nKnvUjLaAdLBGgIR0C+MfWIoE0SdX2UKGgGR7+lI5HVf/m1aAdLAWgIR0C+Mr0Aksz3dX2UKGgGR7+0kdFOO802aAdLAmgIR0C+MokJWvKVdX2UKGgGR7+oqslsxfv4aAdLAWgIR0C+MfkD6nBMdX2UKGgGR7/FEtuk1uR+aAdLA2gIR0C+Mkce4kNXdX2UKGgGR7+0iA2AG0NSaAdLAmgIR0C+Mf1GPPszdX2UKGgGR7/Jvegte2NOaAdLA2gIR0C+MsOK0lZ6dX2UKGgGR7/WmP5pJwsHaAdLBGgIR0C+MpGs/6frdX2UKGgGR7+7uogmqo60aAdLAmgIR0C+MskHpr1vdX2UKGgGR7/RdJJ5E+gUaAdLA2gIR0C+Mk8Oby6MdX2UKGgGR7/Sm9g4OtnxaAdLA2gIR0C+MgVBhQWOdX2UKGgGR7+y5SWJJoTPaAdLAmgIR0C+MlNI5HVgdX2UKGgGR7/YKKYRdyDJaAdLBGgIR0C+Mpu1OTJRdX2UKGgGR7/Stb9qDbrUaAdLA2gIR0C+MgvLxI8RdX2UKGgGR7/Zc/MW43FUaAdLBGgIR0C+MtI9C/oJdX2UKGgGR7+6inHeaa1DaAdLAmgIR0C+MtekUKzBdX2UKGgGR7/R+LWI42jxaAdLA2gIR0C+MqO4smOVdX2UKGgGR7/YG1QZXMhYaAdLBGgIR0C+Ml27z06HdX2UKGgGR7/UiWVu76HkaAdLA2gIR0C+MhPoNd7fdX2UKGgGR7/HIxQBPsRhaAdLA2gIR0C+Mt5Aprk9dX2UKGgGR7/R3XI2fkFOaAdLA2gIR0C+MqpLmITHdX2UKGgGR7/PSNOuaF23aAdLA2gIR0C+MmQ9/z8QdX2UKGgGR7/NHFPznRsuaAdLA2gIR0C+Mhp0jkdWdX2UKGgGR7+SIHkcS5AhaAdLAWgIR0C+MuH6InBtdX2UKGgGR7+7yWiUPhAGaAdLAmgIR0C+Mh/1xsEadX2UKGgGR7/K8PnSv1UVaAdLA2gIR0C+MrJd0JWvdX2UKGgGR7/SXYlIEr5JaAdLA2gIR0C+MmxubZvldX2UKGgGR7/V48EFGG21aAdLA2gIR0C+MujA8B+4dX2UKGgGR7/BwTdtVJcxaAdLAmgIR0C+MnCQPqcFdX2UKGgGR7/LNBWxQizLaAdLA2gIR0C+MiazmfXgdX2UKGgGR7/JGuLaVUuMaAdLA2gIR0C+MroKIBRydX2UKGgGR7/MHcDbJwKjaAdLA2gIR0C+MvAo9cKPdX2UKGgGR7/MnCwbEP1+aAdLA2gIR0C+Mi4BikO7dX2UKGgGR7/K1QZXMhX9aAdLA2gIR0C+MsA6IWP+dX2UKGgGR7/atXxOLzf8aAdLBGgIR0C+MnophF3IdX2UKGgGR7/AMUh3aBZqaAdLAmgIR0C+MjJjYqXodX2UKGgGR7+zqzJIUahpaAdLAmgIR0C+Mn+anaWYdX2UKGgGR7/E09hZyMkyaAdLA2gIR0C+MsfjOs1bdX2UKGgGR7/Agntv4ubraAdLAmgIR0C+MoSFj/dZdX2UKGgGR7/Rkhib2Dg7aAdLA2gIR0C+MjsAaNuMdX2UKGgGR7/D1e0G/vfCaAdLAmgIR0C+Ms4f4h2XdX2UKGgGR7/I+pwS8J2MaAdLA2gIR0C+Mo2hVU++dX2UKGgGR7/TW7e2uxKQaAdLA2gIR0C+MkPReC04dX2UKGgGR7/ULFXJYDDCaAdLA2gIR0C+MtYInjQzdX2UKGgGR7+7gbZOBUaRaAdLAmgIR0C+MpIacZtOdX2UKGgGR7/0IzFdcB2faAdLDmgIR0C+MxPd69kCdX2UKGgGR7/dbd8Aq/dqaAdLBGgIR0C+Mt/w3HaOdX2UKGgGR7/RyhzvJA+qaAdLA2gIR0C+Mpng9/z8dX2UKGgGR7+2uyNXHR1HaAdLAmgIR0C+Mxgk5ZKWdX2UKGgGR7/hemelKsdUaAdLB2gIR0C+MlQ/HHWCdX2UKGgGR7/RHc1wYLssaAdLA2gIR0C+MuZylvZRdX2UKGgGR7/SIkqtozvaaAdLA2gIR0C+MqBXGOuJdX2UKGgGR7/Q/+85CF9KaAdLA2gIR0C+Mx/epGWldX2UKGgGR7/GFuejEehgaAdLA2gIR0C+Mlv1tfoidX2UKGgGR7/QgXuVopQUaAdLA2gIR0C+Mu4s7MgVdX2UKGgGR7/Ha/yoXKr8aAdLA2gIR0C+Mqg22oegdX2UKGgGR7+8feUILPUsaAdLAmgIR0C+MmBwuM/AdX2UKGgGR7/QczqKP4mDaAdLA2gIR0C+MybApKBedX2UKGgGR7+c0xdpqREGaAdLAWgIR0C+MmKtxMnJdX2UKGgGR7/INvOyE+PjaAdLA2gIR0C+MvUIPbwjdX2UKGgGR7/JrjYI0IkaaAdLA2gIR0C+Mq7zkIX1dX2UKGgGR7+4kka/ATIvaAdLAmgIR0C+Myx2jfvXdX2UKGgGR7+mE7GNrCWNaAdLAWgIR0C+My704BFNdX2UKGgGR7/WVwPy08eTaAdLA2gIR0C+Mmrfk3judX2UKGgGR7+5bnoxHoX9aAdLAmgIR0C+MzMS5AhTdX2UKGgGR7/bl+EytV7yaAdLBGgIR0C+Mrjho/RmdX2UKGgGR7+n6ZYxL0z1aAdLAWgIR0C+MrsVpKzzdX2UKGgGR7/CwUQCjk+5aAdLA2gIR0C+MnFSjxkNdX2UKGgGR7/gHIZIg/1QaAdLBmgIR0C+MwTeoDPodX2UKGgGR7++YoiLVFx5aAdLAmgIR0C+MsDSw4bTdX2UKGgGR7/RooNNJvpAaAdLA2gIR0C+MnkofCAMdX2UKGgGR7/fXlbNbC79aAdLBmgIR0C+M0GcOLBLdX2UKGgGR7/XzabnX/YKaAdLBGgIR0C+Mw2sq8UVdX2UKGgGR7/S5ksjFAE/aAdLA2gIR0C+Msef/WDpdX2UKGgGR7+2lzltCRfXaAdLAmgIR0C+Mn3KKYRedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (677 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.25084104500710963, "std_reward": 0.12982421761959864, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T15:05:10.913978"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95699c1128d08f224d99edf950d948c82d88516179727c93f278f3af9bf28d05
|
3 |
+
size 2636
|