File size: 14,624 Bytes
1eaedbf 591f67c 24aba6b 51f5a45 acd397d 51f5a45 33ce350 51f5a45 24aba6b 8b5b6b8 591f67c 51f5a45 591f67c 51f5a45 591f67c 51f5a45 591f67c 33ce350 591f67c 33ce350 591f67c 33ce350 591f67c 24aba6b 591f67c 33ce350 591f67c 33ce350 591f67c 33ce350 591f67c 33ce350 591f67c 33ce350 591f67c 33ce350 51f5a45 33ce350 51f5a45 24aba6b 51f5a45 591f67c 51f5a45 591f67c acd397d 591f67c ca631ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
license: mit
---
# PromCSE: Improved Universal Sentence Embeddings with Prompt-based Contrastive Learning and Energy-based Learning
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lanXViJzbmGM1bwm8AflNUKmrvDidg_3?usp=sharing)
arXiv link: https://arxiv.org/abs/2203.06875v2
Published in [**EMNLP 2022**](https://2022.emnlp.org/)
Our code is modified based on [SimCSE](https://github.com/princeton-nlp/SimCSE) and [P-tuning v2](https://github.com/THUDM/P-tuning-v2/). Here we would like to sincerely thank them for their excellent works.
## Model List
We have released our supervised and unsupervised models on huggingface, which acquire **Top 1** results on 1 domain-shifted STS task and 4 standard STS tasks:
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-cxc)](https://paperswithcode.com/sota/semantic-textual-similarity-on-cxc?p=deep-continuous-prompt-for-contrastive-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-sick)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick?p=deep-continuous-prompt-for-contrastive-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-sts12)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=deep-continuous-prompt-for-contrastive-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-sts13)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=deep-continuous-prompt-for-contrastive-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-sts14)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=deep-continuous-prompt-for-contrastive-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-sts16)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=deep-continuous-prompt-for-contrastive-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/deep-continuous-prompt-for-contrastive-1/semantic-textual-similarity-on-sts15)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=deep-continuous-prompt-for-contrastive-1)
<!-- <img src="https://github.com/YJiangcm/DCPCSE/blob/master/figure/leaderboard.png" width="700" height="380"> -->
| Model | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg. |
|:-----------------------:|:-----:|:----------:|:---------:|:-----:|:-----:|:-----:|:-----:|:-----:|
| [YuxinJiang/unsup-promcse-bert-base-uncased](https://huggingface.co/YuxinJiang/unsup-promcse-bert-base-uncased) | 73.03 |85.18| 76.70| 84.19 |79.69| 80.62| 70.00| 78.49|
| [YuxinJiang/sup-promcse-roberta-base](https://huggingface.co/YuxinJiang/sup-promcse-roberta-base) | 76.75 |85.86| 80.98| 86.51 |83.51| 86.58| 80.41| 82.94|
| [YuxinJiang/sup-promcse-roberta-large](https://huggingface.co/YuxinJiang/sup-promcse-roberta-large) | 79.14 |88.64| 83.73| 87.33 |84.57| 87.84| 82.07| 84.76|
**Naming rules**: `unsup` and `sup` represent "unsupervised" (trained on Wikipedia corpus) and "supervised" (trained on NLI datasets) respectively.
## Usage
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lanXViJzbmGM1bwm8AflNUKmrvDidg_3?usp=sharing)
We provide an easy-to-use python package `promcse` which contains the following functions:
**(1) encode sentences into embedding vectors;
(2) compute cosine simiarities between sentences;
(3) given queries, retrieval top-k semantically similar sentences for each query.**
To use the tool, first install the `promcse` package from [PyPI](https://pypi.org/project/promcse/)
```bash
pip install promcse
```
After installing the package, you can load our model by two lines of code
```python
from promcse import PromCSE
model = PromCSE("YuxinJiang/unsup-promcse-bert-base-uncased", "cls_before_pooler", 16)
# model = PromCSE("YuxinJiang/sup-promcse-roberta-base")
# model = PromCSE("YuxinJiang/sup-promcse-roberta-large")
```
Then you can use our model for **encoding sentences into embeddings**
```python
embeddings = model.encode("A woman is reading.")
```
**Compute the cosine similarities** between two groups of sentences
```python
sentences_a = ['A woman is reading.', 'A man is playing a guitar.']
sentences_b = ['He plays guitar.', 'A woman is making a photo.']
similarities = model.similarity(sentences_a, sentences_b)
```
Or build index for a group of sentences and **search** among them
```python
sentences = ['A woman is reading.', 'A man is playing a guitar.']
model.build_index(sentences)
results = model.search("He plays guitar.")
```
## Train PromCSE
In the following section, we describe how to train a PromCSE model by using our code.
### Setups
[![Python](https://img.shields.io/badge/python-3.8.2-blue?logo=python&logoColor=FED643)](https://www.python.org/downloads/release/python-382/)
[![Pytorch](https://img.shields.io/badge/pytorch-1.7.1-red?logo=pytorch)](https://pytorch.org/get-started/previous-versions/)
Run the following script to install the remaining dependencies,
```bash
pip install -r requirements.txt
```
### Evaluation
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lanXViJzbmGM1bwm8AflNUKmrvDidg_3?usp=sharing)
Our evaluation code for sentence embeddings is based on a modified version of [SentEval](https://github.com/facebookresearch/SentEval). It evaluates sentence embeddings on semantic textual similarity (STS) tasks and downstream transfer tasks. For STS tasks, our evaluation takes the "all" setting, and report Spearman's correlation. The STS tasks include seven standard STS tasks (STS12-16, STSB, SICK-R) and one domain-shifted STS task (CxC).
Before evaluation, please download the evaluation datasets by running
```bash
cd SentEval/data/downstream/
bash download_dataset.sh
```
To evaluate the domain shift robustness of sentence embedding, we need to download [CxC](https://drive.google.com/drive/folders/1ZnRlVlc4kFsKbaWj9cFbb8bQU0fxzz1c?usp=sharing), and put the data into *SentEval/data/downstream/CocoCXC*
Then come back to the root directory, you can evaluate the well trained models using our evaluation code. For example,
```bash
python evaluation.py \
--model_name_or_path YuxinJiang/sup-promcse-roberta-large \
--pooler_type cls \
--task_set sts \
--mode test \
--pre_seq_len 10
```
which is expected to output the results in a tabular format:
```
------ test ------
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
| 79.14 | 88.64 | 83.73 | 87.33 | 84.57 | 87.84 | 82.07 | 84.76 |
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
```
Arguments for the evaluation script are as follows,
* `--model_name_or_path`: The name or path of a `transformers`-based pre-trained checkpoint.
* `--pooler_type`: Pooling method. Now we support
* `cls` (default): Use the representation of `[CLS]` token. A linear+activation layer is applied after the representation (it's in the standard BERT implementation). If you use **supervised PromCSE**, you should use this option.
* `cls_before_pooler`: Use the representation of `[CLS]` token without the extra linear+activation. If you use **unsupervised PromCSE**, you should take this option.
* `avg`: Average embeddings of the last layer. If you use checkpoints of SBERT/SRoBERTa ([paper](https://arxiv.org/abs/1908.10084)), you should use this option.
* `avg_top2`: Average embeddings of the last two layers.
* `avg_first_last`: Average embeddings of the first and last layers. If you use vanilla BERT or RoBERTa, this works the best.
* `--mode`: Evaluation mode
* `test` (default): The default test mode. To faithfully reproduce our results, you should use this option.
* `dev`: Report the development set results. Note that in STS tasks, only `STS-B` and `SICK-R` have development sets, so we only report their numbers. It also takes a fast mode for transfer tasks, so the running time is much shorter than the `test` mode (though numbers are slightly lower).
* `fasttest`: It is the same as `test`, but with a fast mode so the running time is much shorter, but the reported numbers may be lower (only for transfer tasks).
* `--task_set`: What set of tasks to evaluate on (if set, it will override `--tasks`)
* `sts` (default): Evaluate on STS tasks, including `STS 12~16`, `STS-B` and `SICK-R`. This is the most commonly-used set of tasks to evaluate the quality of sentence embeddings.
* `cococxc`: Evaluate on domain-shifted CXC task.
* `transfer`: Evaluate on transfer tasks.
* `full`: Evaluate on both STS and transfer tasks.
* `na`: Manually set tasks by `--tasks`.
* `--tasks`: Specify which dataset(s) to evaluate on. Will be overridden if `--task_set` is not `na`. See the code for a full list of tasks.
* `--pre_seq_len`: The length of deep continuous prompt.
### Training
**Data**
Following SimCSE, we use the same datasets to train our unsupervised models and supervised models. You can run `data/download_wiki.sh` and `data/download_nli.sh` to download the two datasets.
**Training scripts**
(The same as `run_unsup_example.sh`)
```bash
python train.py \
--model_name_or_path bert-base-uncased \
--train_file data/wiki1m_for_simcse.txt \
--output_dir result/my-unsup-promcse-bert-base-uncased \
--num_train_epochs 1 \
--per_device_train_batch_size 256 \
--learning_rate 3e-2 \
--max_seq_length 32 \
--evaluation_strategy steps \
--metric_for_best_model stsb_spearman \
--load_best_model_at_end \
--eval_steps 125 \
--pooler_type cls \
--mlp_only_train \
--pre_seq_len 16 \
--overwrite_output_dir \
--temp 0.05 \
--do_train \
--do_eval \
--fp16
```
We provide example training scripts for both unsupervised and supervised PromCSE. In `run_unsup_example.sh`, we provide a single-GPU (or CPU) example for the unsupervised version, and in `run_sup_example.sh` we give a **multiple-GPU** example for the supervised version. Both scripts call `train.py` for training. We explain the arguments in following:
* `--train_file`: Training file path. We support "txt" files (one line for one sentence) and "csv" files (2-column: pair data with no hard negative; 3-column: pair data with one corresponding hard negative instance). You can use our provided Wikipedia or NLI data, or you can use your own data with the same format.
* `--model_name_or_path`: Pre-trained checkpoints to start with. For now we support BERT-based models (`bert-base-uncased`, `bert-large-uncased`, etc.) and RoBERTa-based models (`RoBERTa-base`, `RoBERTa-large`, etc.).
* `--temp`: Temperature for the contrastive loss.
* `--pooler_type`: Pooling method. It's the same as the `--pooler_type` in the [evaluation part](#evaluation).
* `--mlp_only_train`: We have found that for unsupervised PromCSE, it works better to train the model with MLP layer but test the model without it. You should use this argument when training unsupervised PromCSE models.
* `--hard_negative_weight`: If using hard negatives (i.e., there are 3 columns in the training file), this is the logarithm of the weight. For example, if the weight is 1, then this argument should be set as 0 (default value).
* `--do_mlm`: Whether to use the MLM auxiliary objective. If True:
* `--mlm_weight`: Weight for the MLM objective.
* `--mlm_probability`: Masking rate for the MLM objective.
* `--pre_seq_len`: The length of deep continuous prompt.
* `--prefix_projection`: Whether apply a two-layer MLP head over the prompt embeddings.
* `--prefix_hidden_size`: The hidden size of the MLP projection head if prefix_projection is used.
* `--do_eh_loss`: Whether to use Energy-based Hinge loss in supervised models. If True:
* `--eh_loss_margin`: Margin of Energy-based Hinge loss.
* `--eh_loss_weight`: Weight of Energy-based Hinge loss.
All the other arguments are standard Huggingface's `transformers` training arguments. Some of the often-used arguments are: `--output_dir`, `--learning_rate`, `--per_device_train_batch_size`. In our example scripts, we also set to evaluate the model on the STS-B development set (need to download the dataset following the [evaluation](#evaluation) section) and save the best checkpoint.
All our experiments are conducted on Nvidia 3090 GPUs.
**Hyperparameters**
| **Unsupervised** | BERT-base | BERT-large | RoBERTa-base | RoBERTa-large |
|:--------------|:-----------:|:--------------:|:---------:|:---------:|
| Batch size | 256 | 256 | 64 | 64
| Learning rate | 3e-2 | 3e-2 | 3e-2 | 1e-2 |
| Prompt length | 16 | 10 | 14 | 10 |
| do_mlm | False | False | True | True |
| Epoch |1|1|1|1|
| Valid steps | 125 | 125 | 125 | 125 |
| **Supervised** | BERT-base | BERT-large | RoBERTa-base | RoBERTa-large |
|:--------------|:-----------:|:--------------:|:---------:|:---------:|
| Batch size | 256 | 256 | 512 | 512
| Learning rate | 1e-2 | 5e-3 | 1e-2 | 5e-3 |
| Prompt length | 12 | 12 | 10 | 10 |
| do_mlm | False | False | False | False |
| Epoch |10|10|10|10|
| Valid steps | 125 | 125 | 125 | 125 |
## Citation
Please cite our paper by:
```bibtex
@inproceedings{jiang-etal-2022-improved,
title = "Improved Universal Sentence Embeddings with Prompt-based Contrastive Learning and Energy-based Learning",
author = "Jiang, Yuxin and
Zhang, Linhan and
Wang, Wei",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.220",
pages = "3021--3035",
}
```
|