a2c-AntBulletEnv-v0 / config.json
YvesP's picture
Initial commit
8d46fb2
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbb3f04280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbb3f04310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbb3f043a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbb3f04430>", "_build": "<function ActorCriticPolicy._build at 0x7fcbb3f044c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcbb3f04550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcbb3f045e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbb3f04670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcbb3f04700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbb3f04790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbb3f04820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbb3f048b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcbb3ef3340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686928165536849682, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHpqVkBlaBO+e/AHP43aob94lmO+9gZRPdhssj0sZlk/B2e3vtQ/JbuP8BjAaTqnvNjncD/uMag7XecWQDz16DxJFTI+8oGLuuicGUCmTtM8ynMEP9B5JzvqYynAPbijvOONi7/TY/6/8rk2wA09lL96alZAoG0TvnvwBz+N2qG/eJZjvvYGUT3YbLI9LGZZPx3LOb7UPyW7f/kcwGk6p7wP6jc/7jGoO4maFkA89eg8G8kWvvKBi7orJzJApk7TPM1Y8z7QeSc7FB46wD24o7zjjYu/02P+v/K5NsANPZS/Fzpuv7QvCT/hlME+AzsEvweP8b4IS2U+ToF1P6sAlL89ZIU/rm5oPznuPz+Z67K9U0IoPzGpR74BBkA/WQumvaWe2D/w8/M8ykqPPy7Kzz3r9TU/xTkSQJxV2r7lwky/BM5qP2TPAD8JVLM+DT2Uvx/KFL+F6qc/aOt+vlhKFD+koMA/r4E7P/M3Iz/DXw6/TGbcPqI/jb5Xxig/ak8SP7M+LT2luPK/8xtNPvvwUD4o4sE/1qS4v9oEND+xqNw+Nk0GQAOd0r1ATWC/C8dfvwTOaj9kzwA/CVSzPg09lL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADACPM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJSwHPgAAAACqANq/AAAAAD4sDD4AAAAA+dzcPwAAAABju8O9AAAAADGm4D8AAAAAZkjTvQAAAABmjue/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPMunNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPoCmr0AAAAAYY31vwAAAAAIl6G9AAAAAB6i/z8AAAAAV8oivQAAAABK0/s/AAAAAEsqX70AAAAA/djjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALWWQ7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB0fQ08AAAAANI4678AAAAAYxq/vQAAAABATOE/AAAAADnyqj0AAAAABW/oPwAAAADKDXM8AAAAAF0z+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpRZU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAUjxPAAAAAAT5/W/AAAAADJ+UT0AAAAAvBHcPwAAAAAZcus9AAAAANfo7D8AAAAAXQ2KvQAAAACk/uS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJe6cXDWK/GMAWyUTegDjAF0lEdAsDAgC1Z1WHV9lChoBkdAl+sIVARkE2gHTegDaAhHQLAyqyrgflp1fZQoaAZHQJYSTo8p1A9oB03oA2gIR0CwM1GQKa5PdX2UKGgGR0CV9R9OARTTaAdN6ANoCEdAsDNR9tuUEHV9lChoBkdAlxFhA8jiXWgHTegDaAhHQLA32CeVcD91fZQoaAZHQJe7upCKJl9oB03oA2gIR0CwOhImCyyEdX2UKGgGR0CXUQ3XZoPDaAdN6ANoCEdAsDqzYChexHV9lChoBkdAmYQuI68xsWgHTegDaAhHQLA6s8EV32V1fZQoaAZHQJkywUXYUWVoB03oA2gIR0CwQTlZ5iVjdX2UKGgGR0CYJJ2mpEQYaAdN6ANoCEdAsEN+YF7laXV9lChoBkdAmLfrCN0eVGgHTegDaAhHQLBEI1pj+aV1fZQoaAZHQJWTzAHmig1oB03oA2gIR0CwRCPBJqZddX2UKGgGR0CWuExNIsiCaAdN6ANoCEdAsEiuflIVd3V9lChoBkdAk81mcawUxmgHTegDaAhHQLBLGHWjGkx1fZQoaAZHQJTzhjkMkQhoB03oA2gIR0CwTBAKjSG8dX2UKGgGR0CVWi/UONHZaAdN6ANoCEdAsEwQmzByj3V9lChoBkdAlmDeHFglW2gHTegDaAhHQLBSFKZ2IO91fZQoaAZHQJIJg7V8Ti9oB03oA2gIR0CwVFMqOLiudX2UKGgGR0CY1gu9vjwQaAdN6ANoCEdAsFT7oJRfnnV9lChoBkdAllyIyfthNWgHTegDaAhHQLBU/AIppex1fZQoaAZHQJiD86o2n89oB03oA2gIR0CwWYrXpW3jdX2UKGgGR0CXF+FQVKwqaAdN6ANoCEdAsFy3DXOGCnV9lChoBkdAmYUtFvybx2gHTegDaAhHQLBdvUtZmqZ1fZQoaAZHQJj11gUlAu9oB03oA2gIR0CwXb4IrvsrdX2UKGgGR0CYuaPi1iOOaAdN6ANoCEdAsGLuMefZmXV9lChoBkdAk3njRUm2LGgHTegDaAhHQLBlLFkhA4Z1fZQoaAZHQJN5gZwXIltoB03oA2gIR0CwZdY4p+c6dX2UKGgGR0CXK3QUYbbUaAdN6ANoCEdAsGXWoAGSp3V9lChoBkdAlcgOPvKEFmgHTegDaAhHQLBq3Y02tMh1fZQoaAZHQJg035ULlV9oB03oA2gIR0CwbmDSCvovdX2UKGgGR0CZdNH/95yEaAdN6ANoCEdAsG9EgLZzxXV9lChoBkdAl8TrC3w1BWgHTegDaAhHQLBvRUaQ3gl1fZQoaAZHQJnUkJng5zZoB03oA2gIR0Cwc79eUpuudX2UKGgGR0CZVArGR3eOaAdN6ANoCEdAsHXte+mFanV9lChoBkdAlRXMM/hVEWgHTegDaAhHQLB2j8YQ8Ol1fZQoaAZHQJfnXSPU8V5oB03oA2gIR0CwdpAqmTC+dX2UKGgGR0CR7NABkqc3aAdN6ANoCEdAsHwgJMQEp3V9lChoBkdAlvR0wBYFJWgHTegDaAhHQLB/SCGN70F1fZQoaAZHQJZKw4CIUJxoB03oA2gIR0Cwf+yquKXOdX2UKGgGR0CXjUstkFwDaAdN6ANoCEdAsH/tEofCAXV9lChoBkdAk+J6nBLwnmgHTegDaAhHQLCEektmL+B1fZQoaAZHQJUi24UeuFJoB03oA2gIR0CwhrEOVgQZdX2UKGgGR0CVYaF1SwW4aAdN6ANoCEdAsIdX+XJHRXV9lChoBkdAlYtanaWX1WgHTegDaAhHQLCHWHd43WF1fZQoaAZHQJRghLi++M9oB03oA2gIR0Cwjm//m1YydX2UKGgGR0CSXl5rxiG4aAdN6ANoCEdAsJIxT850bXV9lChoBkdAkoYhtP557mgHTegDaAhHQLCS6P8AJcB1fZQoaAZHQJGk0RmK64FoB03oA2gIR0CwkulawD/3dX2UKGgGR0CRkBUfxMFmaAdN6ANoCEdAsJdwH/tICnV9lChoBkdAkeMAK4QSSWgHTegDaAhHQLCZpn0Cih51fZQoaAZHQJRpA1vVEuxoB03oA2gIR0Cwmkhyn1nNdX2UKGgGR0CVCq6T4cm0aAdN6ANoCEdAsJpI0l7dBXV9lChoBkdAlMxLLyMDOmgHTegDaAhHQLCgGYXfqHJ1fZQoaAZHQJXB2i0v4/NoB03oA2gIR0CwovtXcQAddX2UKGgGR0CU/KXv6TGHaAdN6ANoCEdAsKOidXko4XV9lChoBkdAlb9JZjhDPWgHTegDaAhHQLCjotNSIgx1fZQoaAZHQJahPmQr+YNoB03oA2gIR0CwqDQJw84hdX2UKGgGR0CWZtYsunMuaAdN6ANoCEdAsKp239aUzXV9lChoBkdAl7dOWnjyWmgHTegDaAhHQLCrGu/k/8l1fZQoaAZHQJY6Ii6g/TtoB03oA2gIR0CwqxtQ9A5adX2UKGgGR0CVKVN/OMVDaAdN6ANoCEdAsLGfv0AcUHV9lChoBkdAl8em5QP7N2gHTegDaAhHQLCzztV7x/d1fZQoaAZHQJeKpg1FYuFoB03oA2gIR0CwtHDOoo/idX2UKGgGR0CXCXAbhm5EaAdN6ANoCEdAsLRxMSK3u3V9lChoBkdAmT33XmNipmgHTegDaAhHQLC487wazeJ1fZQoaAZHQJlDrs7dSEVoB03oA2gIR0CwuzF8w5/9dX2UKGgGR0CYdsJul41QaAdN6ANoCEdAsLwX7gsK9nV9lChoBkdAkR+p2IO6NGgHTegDaAhHQLC8GIcR15l1fZQoaAZHQJahXWDpTuRoB03oA2gIR0CwwknKfWc0dX2UKGgGR0CTkBLPldTpaAdN6ANoCEdAsMSBprULD3V9lChoBkdAl8VqbnX/YWgHTegDaAhHQLDFJoQnQY11fZQoaAZHQJXpoSpR4yJoB03oA2gIR0CwxSbc45tFdX2UKGgGR0CXRsI7eVLSaAdN6ANoCEdAsMmlAVwgknV9lChoBkdAlH3np4bCJ2gHTegDaAhHQLDMZh6jWTZ1fZQoaAZHQJlh0KRdQfpoB03oA2gIR0CwzW7xmTTwdX2UKGgGR0CYLEIGQjlgaAdN6ANoCEdAsM1vmGM4tHV9lChoBkdAlLCCU9pyqGgHTegDaAhHQLDTCJxeb/h1fZQoaAZHQJbelJwsGxFoB03oA2gIR0Cw1T6XWvr4dX2UKGgGR0CS9RBOYYzjaAdN6ANoCEdAsNXnmuDBdnV9lChoBkdAl2nO49X9zmgHTegDaAhHQLDV5/Yrauh1fZQoaAZHQJXTjjyWiURoB03oA2gIR0Cw2oAWi1zAdX2UKGgGR0B45y5TZQHiaAdN6ANoCEdAsN4DrGBFu3V9lChoBkdAl+XCckMTe2gHTegDaAhHQLDfDdUbT+h1fZQoaAZHQJFVEkHD765oB03oA2gIR0Cw3w6XOW0JdX2UKGgGR0CVD2tknTiLaAdN6ANoCEdAsOPxRgqmTHV9lChoBkdAkiNqJVKf4GgHTegDaAhHQLDmN/o7muF1fZQoaAZHQJJ0lnkDIR1oB03oA2gIR0Cw5t5JXhfjdX2UKGgGR0CV4gtix3V1aAdN6ANoCEdAsObeoHcDbXV9lChoBkdAk0uL6LwWnGgHTegDaAhHQLDsG/XGwRp1fZQoaAZHQJRbxdxAB1doB03oA2gIR0Cw75x3u/lAdX2UKGgGR0CM1SPn0TURaAdN6ANoCEdAsPBJl2/zrnV9lChoBkdAlBEnAM2FWWgHTegDaAhHQLDwSfU4JeF1fZQoaAZHQJMiwBltj1BoB03oA2gIR0Cw9NJ5iVjadX2UKGgGR0CS2BNfw7T2aAdN6ANoCEdAsPcKnfl6q3V9lChoBkdAloO1ERaouWgHTegDaAhHQLD3tpjMFEB1fZQoaAZHQJTDIwudwvRoB03oA2gIR0Cw97b1h9b5dX2UKGgGR0CXgAS/CZWraAdN6ANoCEdAsP3IrYoRZnV9lChoBkdAmP0PfsNUfmgHTegDaAhHQLEAiRU3n6l1fZQoaAZHQJWvg9Pk7wNoB03oA2gIR0CxATITwlSkdX2UKGgGR0CVBoFQVKwqaAdN6ANoCEdAsQEyc5Ke1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62639, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}